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Amplified risk of spatially compounding droughts during
co-occurrences of modes of natural ocean variability
Jitendra Singh 1✉, Moetasim Ashfaq 2, Christopher B. Skinner3, Weston B. Anderson 4 and Deepti Singh1

Spatially compounding droughts over multiple regions pose amplifying pressures on the global food system, the reinsurance
industry, and the global economy. Using observations and climate model simulations, we analyze the influence of various natural
Ocean variability modes on the likelihood, extent, and severity of compound droughts across ten regions that have similar
precipitation seasonality and cover important breadbaskets and vulnerable populations. Although a majority of compound
droughts are associated with El Niños, a positive Indian Ocean Dipole, and cold phases of the Atlantic Niño and Tropical North
Atlantic (TNA) can substantially modulate their characteristics. Cold TNA conditions have the largest amplifying effect on El Niño-
related compound droughts. While the probability of compound droughts is ~3 times higher during El Niño conditions relative to
neutral conditions, it is ~7 times higher when cold TNA and El Niño conditions co-occur. The probability of widespread and severe
compound droughts is also amplified by a factor of ~3 and ~2.5 during these co-occurring modes relative to El Niño conditions
alone. Our analysis demonstrates that co-occurrences of these modes result in widespread precipitation deficits across the tropics
by inducing anomalous subsidence, and reducing lower-level moisture convergence over the study regions. Our results emphasize
the need for considering interactions within the larger climate system in characterizing compound drought risks rather than
focusing on teleconnections from individual modes. Understanding the physical drivers and characteristics of compound droughts
has important implications for predicting their occurrence and characterizing their impacts on interconnected societal systems.
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INTRODUCTION
Weather and climate extremes pose substantial risks to people,
property, infrastructure, natural resources and ecosystems1–3.
Although a majority of risk assessment studies have focused on
single stressor hazards occurring in specific regions, the Inter-
governmental Panel on Climate Change (IPCC) Special Report on
Managing the Risks of Extreme Events and Disasters to Advance
Climate Change Adaptation (SREX) highlights the importance of
considering compound extremes resulting from the simultaneous
or sequential occurrence of multiple climate hazards in the same
region, for improved modeling and risk estimation of their
impacts4. Since then, several studies have analyzed the risks and
mechanisms of such compound events5–9. Another emerging
category of compound events that involve the simultaneous
occurrence of extremes across multiple regions, referred to as
spatially compounding extremes, is gaining prominence due to
the potential for their cascading impacts on the global food
system, disaster management resources, international aid, reinsur-
ance industries, and the global economy10–12.
Spatially compounding climate extremes across multiple global

breadbaskets, regions that contribute substantially to global food
production, can have aggregate impacts on global food avail-
ability and security7,13. The risk of co-occurring adverse climate
conditions across multiple wheat, maize, and soybean producing
regions has increased over the last four decades, highlighting the
potential for simultaneous breadbasket failure14. In the absence of
agricultural adaptation to climate change, projected climate
changes will likely exacerbate the risk of crop failures across
multiple breadbaskets. For instance, projected warming is likely to
increase the co-occurrence of warm and dry extremes over

multiple croplands and pastures7, and is also expected to amplify
the risk of synchronous failures across major maize producing
regions12. Such synchronous shocks could trigger international
food price spikes and disrupt trade infrastructure, which could
amplify threats to food security12,13,15, particularly in developing
countries, where the population is already more vulnerable and
food insecure16. In addition, compound extremes are likely to have
amplifying negative impacts on insurance industries that integrate
impacts across multiple sectors, and reinsurance industries that
additionally integrate impacts across different regions10. Their
increasing occurrence and associated losses could limit the
profitability of insurance companies, which could have cascading
impacts on financial markets and could force companies to
increase insurance premiums, reducing insurance affordability and
shifting more of the burden of disaster-related losses on
governments and individuals10.
Recent work has started to build an understanding of the

physical mechanisms that connect the occurrence of extremes
across different regions. Kornhuber et al.17 found that the co-
occurring summer 2018 heatwaves across North America, Western
Europe, and the Caspian Sea region were driven by a recurrent
wave-7 circulation pattern in the Northern-hemisphere mid-
latitude jet stream. More generally, the occurrence of Rossby
wave numbers 5 and 7 are found to substantially increase the
probability of spatially compounding heat extremes over multiple
mid-latitude regions including Central North America, Eastern
Europe, and Eastern Asia, reducing global average crop produc-
tion by nearly 4%18. The occurrence of Rossby waves can also link
extreme events in the mid-latitudes and subtropics. For instance,
Lau and Kim19 identified the role of Rossby wave trains in linking
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two record-setting extreme events during summer 2010—the
persistent Russian heat wave and catastrophic flooding in Pakistan
—with land-atmosphere feedbacks amplifying the Russian heat
wave and moisture transport from the Bay of Bengal sustaining
and amplifying the rains over Pakistan. Such compound extremes
simultaneously affected millions of people and triggered a global
food price spike associated with an approximately 30% loss in
grain production in Russia20, which is a leading contributor to the
global wheat trade21.
While recent studies of compound extremes have focused on

the Northern Hemisphere mid-latitudes, the processes influencing
compound extremes across the lower latitudes have received
relatively little attention. Singh et al.22 investigated the underlying
mechanisms of one such event—compound severe droughts
across South Asia, East Asia, Brazil, and North and South Africa
during 1876–1878, which were linked to the famines that
contributed to the Late Victorian Holocausts23. The severity,
duration, and extent of this compound drought event was shaped
by the co-occurrence of a record-breaking El Niño (1877–1878), a
record strong Indian Ocean Dipole (IOD) (1877), and record warm
conditions in the North Atlantic Ocean (1878)22. El Niño Southern
Oscillation (ENSO) is one of the main modes of variability that can
cause simultaneous droughts and consequently affect food
production in multiple remote regions. For instance, the reduction
in global maize production in 1983 resulting from simultaneous
crop failures across multiple regions13 is linked to the strong
1982–1983 El Niño event24. ENSO teleconnections lead to
correlated climate risks between agricultural regions in North
and South America and across the Pacific in Northern China and
Australia25. For example, maize and soybean growing conditions
in the US and southeast South America are favorable during the
El-Niño phase, while the conditions are unfavorable in northern
China, Brazil, and Southern Mexico25. In addition to ENSO, modes
of variability in the Indian and Atlantic Ocean such as the Indian
Ocean Dipole (IOD), tropical Atlantic variability, and the North
Atlantic Oscillation are found to substantially affect the production
of globally-aggregated maize, soybean, and wheat24. The influ-
ence of the interaction between these modes of natural variability
on spatially compounding droughts across various regions has not
yet been investigated.
Here, we examine the influence of four modes of natural climate

variability on compound droughts across ten regions (Fig. 1a)
defined in the SREX2 - Amazon (AMZ), Central America (CAM),
Central North America (CNA), East Africa (EAF), East Asia (EAS), East
North America (ENA), South Asia (SAS), Southeast Asia (SEA),
Tibetan Plateau (TIB), and West Africa (WAF). We select these
regions for three main reasons: (1) these regions include areas that
receive a majority of their annual precipitation during the summer
season (June–September) and experience high monthly precipita-
tion variability, (2) several of these regions are physically
connected by the global summer monsoon system26,27, and (3)
climate variability across these regions are affected by similar
modes of sea surface temperature (SST) variability. Our analysis
only focuses on areas within these regions that meet the criteria of
predominantly summer season precipitation and high monthly
variability, which are identified based on the Shannon Entropy
Index. These regions include major population centers with high
levels of poverty and food insecurity and a number of major grains
producing regions of the world, making them important in the
context of global food security.
The predominant influence of tropical Pacific SSTs (El-Niño or

La-Nina condition) on precipitation variability over these regions is
well-known28,29. In addition, previous studies have highlighted the
significant influence of other modes of variability such as the IOD,
the Atlantic Niño and the Tropical North Atlantic (TNA) alongside
El-Niño on individual regions such as SAS30,31, WAF/EAF32,33,
EAS34,35, SEA36, and AMZ37,38. We aim to understand how the co-
occurrence of these modes of variability influence the

characteristics of spatially compound droughts across the ten
SREX regions. By advancing the knowledge of the physical drivers
of compound droughts, the findings from this study have
relevance for quantifying the cascading risk to critical, globally
connected socio-economic sectors such as agriculture and thereby
to regional and global food security and disaster risk manage-
ment. By identifying SST conditions that have prediction skill on
seasonal timescales39–41, our findings also highlight the potential
for predictability of such events that can aid in predicting and
managing their impacts42.

RESULTS AND DISCUSSION
Compound drought characteristics and their physical drivers
To identify summer season (June–September) compound
droughts across the ten SREX regions (Fig. 1a), we utilize the
Standardized Precipitation Index (SPI), which is a commonly-used
measure of meteorological drought. Our analysis is limited to grid
cells within each region that have high entropy values (Fig. 1a),
signifying substantial summer season precipitation and high
monthly precipitation variability. We define drought at a grid cell
when SPI is below −1 standard deviation (< −1σ) and consider a
region under drought when total number of grids with SPI <−1σ
exceeds 80th percentile of the historical drought area for that
region (see “Methods” section; Fig. 1c). Based on these definitions,
we find 11 years since 1981 that have at least three regions
simultaneously experiencing droughts (Fig. 1b), which we here-
after refer to as compound droughts.
El Niño exhibits the strongest influence on the occurrences of

compound droughts in the observations. 8 of the 11 observed
compound droughts in CHIRPS are associated with anomalously
warm SSTs in the Niño3.4 region, with seven of them classified as
El Niño events (≥0.5σ; Fig. 2). A majority of compound droughts
occur during the developing phase of moderate to strong El Niño
(SST anomaly >1σ) (Fig. S1) and only two compound droughts are
associated with anomalously cold SST over Niño3.4 region. For
instance, the strong El Niños of 1982, 1997, and 2015 resulted in
widespread and severe compound droughts that simultaneously
affected over five of the study regions. In each case, the total
drought affected area across all ten regions exceeded the
historical 90th percentile (referred to as widespread droughts)
and average SPI across all regions remained in the lowest
historical 10th percentile (referred to as severe droughts; Fig. 2).
However, not all strong El Niño years led to compound droughts
(e.g., 1987) and substantial SST anomalies across the Atlantic and
Indian Ocean basins were also present during the 11 compound
droughts (Fig. S2), indicating the possibility of a more complex
interplay of multiple modes of ocean variability. Therefore, we
seek to investigate the influence of individual and co-occurring
natural modes of ocean variability on the characteristics of
compound droughts. Specifically, we consider El Niño co-
occurrences with IOD, Atlantic Niño, and TNA, since their
influences on the interannual precipitation variability in our study
regions are well established30,43. We note that 7 of 12 positive IOD
(IOD+; DMI > 0.5σ), 5 of 11 negative Atlantic Niño (AtlNiño−; SST
anomaly <−0.5σ), and 7 of 14 negative TNA (TNA−; SST anomaly
<−0.5σ) co-occurred with compound droughts (Fig. 2). Overall,
more than 60% (7 out of 11) of the observed compound droughts
occurred during the years when two or more of these modes of
ocean variability were active (Fig. 2).
The apparent dominance of El Niño as a major player during the

episodes of compound droughts is not sensitive to the choice of
threshold used to define drought. For instance, if classification of a
region under drought is based on 90th percentile of the historical
drought area for that region instead of the 80th percentile, the
total number of compound droughts in the last four decades
expectedly reduces (5 instead of 11) (Fig. S1), however, 80% of
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them are still during strong El Niño events. These findings are also
insensitive to the choice of the observational dataset. For instance,
use of precipitation from Climate Research Unit (CRU) and SSTs
from Extended Reconstructed Sea Surface Temperature (ERSST)
NOAA V544 over 1901–2018 yields nearly 70% (12 of the 17) of
compound and widespread droughts during strong El Niño events
(Fig. S3). Similar to CHIRPS, more than half (~60%) of the
compound droughts are associated with the co-occurrence of
two or more modes of ocean variability (Fig. S3). While we do find
8 of the 39 compound droughts in the 118-year record associated

with opposite phases of two or more of these variability modes
(Figs. 2 and S3), those conditions are comparatively rare45.

Identifying relevant phases of natural variability modes
To establish the relationship between these modes of ocean
variability and SPI in the study regions, we perform a multiple
linear regression analysis (Fig. S4). Our analyses reveal a wide-
spread and consistent negative influence of the Niño3.4 SST
anomalies (Fig. S4a) and positive influence of the Atlantic Niño SST

Fig. 1 Historical characteristics of compound drought events. a Map showing the ten SREX regions (red line) and the ocean regions (blue
dashed lines) used to define various modes of variability considered in this study. Red text indicates the fraction of each SREX region with high
entropy values [entropy > 4.86, which is the median entropy value across ten SREX regions] (teal color). b Historical timeseries of the number of
regions experiencing summer season (June–September) drought (gray) and the total drought affected area (green) based on the Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS) precipitation data (1981–2018). The gray dashed line indicates the threshold of the number of
regions used to define a compound drought event. Gray shading indicates the years with compound droughts. c Drought affected area in each
season over each SREX region. Blue circles indicate seasons when the drought-affected area exceeds 80th percentile of the long-term average
drought area. The magnitude of the 80th percentile thresholds for drought area are indicated on the right beside each region.
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anomalies (Fig. S4b) on SPI in most regions, suggesting that
Niño3.4+ and AtlNiño− conditions are conducive to droughts in
these regions. In contrast, we find that the TNA SST anomalies (Fig.
S4c) and the IOD (Fig. S4d) have a varied influence across these
regions. For instance, the IOD has a positive influence on SPI over
parts of WAF, EAF and SAS but a negative influence over parts of
CNA and SEA. This indicates that IOD+ conditions promote
droughts over CNA and SEA. Similarly, the TNA SST anomalies
exhibit a negative influence over parts of AMZ, but positive
influence over parts of CAM, SEA, and WAF, which suggest that
TNA− conditions favor droughts over the latter regions.
We also calculate the fraction of the total drought events in

each region during different phases of these modes of ocean
variability (Fig. S5). Positive Niño3.4 SST anomalies (>0.5σ;
Niño3.4+) are linked to a substantial fraction of historical drought
events over several regions. Niño3.4+ (nine events historically)
conditions are associated with ≥75% of droughts over CAM, SAS,
and SEA, and ≥50% of droughts over EAF, WAF, and TIB. Similarly,
TNA− conditions are coincident with ≥75% of droughts over CAM
and SAS, and ≥50% over SEA, TIB, and WAF. AtlNiño- events
coincide with ≥50% of droughts over AMZ, EAS, and WAF while
IOD+ is present during ≥75% of droughts over SEA and ≥50% of
droughts over AMZ, CAM, CAN, SAS, TIB, and WAF (Fig. S5). In
contrast, the opposite phases of IOD, TNA, and AtlNiño are
associated with a small fraction of droughts over only one region.
Collectively, these results suggest the predominant influence of
Niño3.4+, IOD+, TNA−, and AtlNiño− on individual regions and
compound droughts. These conditions are also more likely to co-
occur. For instance, El Niño conditions are more likely to co-occur
with IOD+ conditions as they tend to drive warmer SSTs over the
western Indian ocean through the atmospheric bridge and cooler
SSTs over the eastern Indian ocean via oceanic Indonesian
throughflow45. Similarly, cold SSTs over the tropical north Atlantic
Ocean can induce warm conditions over the Pacific Ocean by
influencing the Walker circulations45, making cold TNA conditions
and El Niños more likely. Therefore, we further explore how IOD+,
TNA−, and AtlNiño− modes interact with El Niño to influence
drought characteristics over individual regions and consequently,
compound droughts.

Amplifying effect of co-occurring modes with El Niño
The interplay of Niño3.4+ with other modes of ocean variability
requires several instances of their co-occurrences for robustly
distinguishing their individual and combined influence. Given the
limited length of the observed record, we primarily study their
interactions in a multicentury (1800 years) preindustrial climate
simulation from the National Center for Atmospheric Research
(NCAR) Community Earth System Model (CESM)46. CESM skillfully
represents precipitation over the study regions and SST variability
representing various oceanic modes relevant to this study47,48. We
have included comparisons of CESM with observations, where
feasible (Fig. 3). The 1800-year preindustrial simulation provides a
substantially larger number of events to examine the relative and
combined influence of natural modes of variability without any
changes resulting from external climate forcing (Fig. 3). We
compare regional drought characteristics during three types of
conditions (see “Methods” section)—(1) El Niño co-occurring with
other modes (either IOD+ or/and TNA− or/and AtlNiño−; referred
to as co-occurring conditions), (2) El Niño occurring alone (referred
to as Niño3.4+ conditions), and (3) neutral conditions, when none
of them are active (Fig. 3). It should be noted that there are no
neutral conditions in the 38-year observational record, and limited
instances of the other two conditions does not allow their robust
comparisons (e.g., there are 2 Niño3.4+ and 7 co-occurring
conditions).
During Niño3.4+, a large fraction of all tropical regions—AMZ,

CAM, EAF, WAF, SAS, and SEA—experience abnormally dry
anomalies (Fig. S6), consistent with well-known observed ENSO
teleconnections49–51. The co-occurrence of Niño3.4+ with other
modes intensifies dry conditions over EAS, SEA, CAM, and AMZ,
while the opposite impact is experienced over EAF (Fig. S6). The
simulated composites show consistency with both observed
datasets over most regions, with the exception of biases in the
extent and intensity of precipitation deficits over parts of SAS,
WAF and EAF between model and observations (Fig. S6). We also
quantify the aggregate drought area and intensity across the
individual regions (Fig. 3). In the CESM preindustrial simulation,
two regions—CAM and SEA—experience significantly larger
drought areas during both Niño3.4+ and co-occurring conditions

Fig. 2 Drought characteristics and variability modes. Top three rows show the drought characteristics from CHIRPS and bottom four rows
show the four SST indices from National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST dataset version 2
(V2) in each year (1981–2018). The white dots indicate years with severe droughts (row 1), widespread droughts (row 2) and compound
droughts (row 3). White dots in the bottom four rows indicate years with positive SST anomalies (≥0.5σ) over Niño3.4 and IOD regions and
negative (≤−0.5σ) SST anomalies over TNA and AtlNiño regions.
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relative to neutral conditions (indicated by gray arrows in Fig. 3a),
while two regions—AMZ and SAS only show significantly larger
droughts during co-occurring conditions but not during Niño3.4+

relative to neutral conditions (box plots, Fig. 3a). In addition, co-
occurring conditions expand the drought area over AMZ and SEA
and significantly reduce drought area over EAF relative to
Niño3.4+ (indicated by green arrows in Fig. 3a), consistent with
observations (solid circles, Fig. 3a), highlighting their role in
shaping drought characteristics. Moreover, Niño3.4+ significantly
increases drought intensity over EAF, SEA, and WAF relative to
neutral conditions. Further, co-occurring conditions are associated
with significantly higher drought intensity over AMZ, CAM, WAF,

EAF, SAS, and SEA relative to Niño3.4+ (Fig. 3b), consistent with
observations (solid circles, Fig. 3b). Overall, these findings high-
light the complex interplay of Niño3.4+ and other modes of ocean
variability that control the spatial footprint and severity of over
studies regions (Figs. 3 and S6).
While Niño3.4+ exhibits the strongest influence on regional

precipitation characteristics, (Fig. 3 and S6), the frequency, severity
and spatial extent of compound droughts is substantially
enhanced when Niño3.4+ co-occurs with other natural modes of
ocean variability (Fig. S7). For instance, the probability of
compound droughts in CESM increases from 0.09 during neutral
conditions to ~0.27 during Niño3.4+ conditions and ~0.43 during

Fig. 3 Influence of El Niño and co-occurring modes of variability on regional drought characteristics. Observed (1981–2018; filled circles)
and simulated (boxplots and unfilled circles) distribution of a drought area and b drought intensity in each SREX region during neutral (gray),
Niño3.4+ (green) and co-occurring (orange) conditions. Neutral conditions represent summer (June–September) seasons with neutral phases
(< ± 0.5 σ) of the four modes of variability considered. Niño3.4+ conditions represent seasons with SST anomalies >0.5σ over the Niño3.4
region only and other modes in their neutral phases. Co-occurring conditions include summer seasons with Niño3.4+ conditions co-occur
with either cold Atlantic Niño SST anomalies (<−0.5σ), cold TNA SST anomalies (<−0.5σ) or positive IOD (DMI >0.5σ) conditions, consistent
with the phases of these modes that are associated with droughts in most regions. Gray arrows indicate significant differences in the mean of
distribution of drought area and intensity during Niño3.4+ or co-occurring conditions relative to neutral conditions at 5% significance level.
Green arrows indicate significant differences in the mean of distributions between Niño3.4+ and co-occurring conditions at 5% significance
level. Black dots show the mean of the distribution in each boxplot. Significance of the difference in the drought characteristics between
Niño3.4+ and co-occurring conditions in observations is not estimated due to small sample sizes. There are 2 Niño3.4+ and 7 co-occurring
conditions in observations and 27 Niño3.4+ and 426 co-occurring conditions in the CESM pre-industrial simulation.
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co-occurring conditions (Fig. S7d). Likewise, the probability of
widespread and severe droughts is nearly 70% higher during co-
occurring conditions relative to Niño3.4+ conditions alone (Fig.
S7e, f). These model-based findings are mostly consistent with
observations (Fig. S7a–c), except that the simulated number of
drought-affected regions during co-occurring conditions is not
significantly higher even though the probability of simulated
compound droughts is ~20% higher relative to Niño3.4+

conditions in observations (Fig. S7a).

Influence of co-occurring modes on regional droughts
Next, we isolate the influence of each individual mode of
variability and their co-occurrence with Niño3.4+ on precipitation
characteristics (Fig. 4). AtlNiño− is associated with anomalously dry
conditions (relative to neutral) over WAF, central AMZ, northern
TIB and EAS (Fig. 4a, b). Its co-occurrence with Niño3.4+

significantly influences precipitation anomalies in the Atlantic
Rim regions, including stronger precipitation deficits over WAF
and the AMZ and reversal of Niño3.4+ forced anomalies (wet to
dry) over CNA (Fig. 4e, f). More intense and widespread drying
over WAF and AMZ during Niño3.4+/AtlNiño− occurs without
substantial increase in SST anomalies over the Niño3.4 region,
which indicates an additive influence of these modes on regional
drought characteristics. Likewise, co-occurring TNA-/Niño3.4+

conditions also appear to have an additive influence though the
composites do indicate significantly higher SST anomalies over
the part of Niño3.4 region indicative of slightly stronger Niño3.4+

conditions (Fig. 4g). Individually, TNA− are associated with dry
conditions over WAF, EAF, CAM, southern SAS, and northern TIB
relative to neutral conditions (Fig. 4a, c, e). Co-occurring TNA−/
Niño3.4+ conditions amplify the Niño3.4+-related drying over
CAM, AMZ, EAF, northern TIB, central EAS, and SEA. In addition,
there are more widespread precipitation deficits across WAF, EAF
and SAS over areas that would experience wet anomalies during
Niño3.4+ (Fig. 4, e, g).
In contrast to the relatively consistent drying influence of these

modes across multiple regions, IOD+ exhibits a dipolar influence
across the regions surrounding the Indian Ocean. IOD+ is
associated with anomalous drying over western SEA, northern
SAS, TIB, northeast EAS and parts of CNA and anomalous wet
conditions over EAF52 and WAF49 (Fig. 4a, d). Therefore, Niño3.4+/
IOD+ co-occurrence dampens the drying impacts of Niño3.4+a-
cross the latter regions, while it expands and intensifies
precipitation deficits over SAS and SEA. These findings are
consistent with Preethi et al.49 suggesting the co-occurrence of
IOD+ conditions can dampen the influence of tropical drivers over
Africa. One confounding factor in determining the modulating
influence of the IOD+ on Niño3.4+-related drought effects is that
intensity of Niño3.4+ is substantially higher during IOD+ (Fig. 4e,
h), as studies suggest that strong Niño3.4+ events force IOD+

conditions53–55, which is perhaps partly responsible for the
intensification of drought severity over SEA and parts of SAS
during Niño3.4+/IOD+ co-occurrence.
Given the substantial effect of all four natural variability modes

on regional precipitation (Figs. 3 and 4), we assess the individual

Fig. 4 Simulated influence of individual variability modes and co-occurring conditions. Composites of precipitation and SST anomalies
during a neutral conditions, b AtlNiño− conditions only, c TNA− conditions only, d IOD+ conditions only, e Niño3.4+ conditions only, and co-
occurring f Niño3.4+/AtlNiño−, g Niño3.4+/TNA−, and h Niño3.4+/IOD+ conditions. Numbers in the headings indicate the number of summer
seasons with individual and co-occurring phases of the modes used in each composite. Co-occurring conditions indicated by Niño3.4+/IOD+,
Niño3.4+/AtlNiño−, and Niño3.4+/TNA− denote co-occurrences of specific modes while other modes are in their neutral phases. The hatched
SST and precipitation composites on the left indicate significant differences in the composite mean relative to neutral conditions and on the
right indicate significant differences in the composite mean relative to Niño3.4+ conditions, at 5% significance level.
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and combined influence of each of the combinations on
aggregate drought area and intensity across a subset of six SREX
regions that are substantially affected by these variability modes
(Fig. 5). Amongst the four modes, Niño3.4+ significantly increases
drought area over the largest number of these regions—CAM,
EAF, and SEA-relative to neutral conditions, followed by TNA- that
increases drought area over CAM and EAF (indicated by gray
arrows in Fig. 5a). The individual influence of other modes is
limited to fewer regions—AtlNiño− significantly increases drought
area over WAF, whereas IOD+ significantly decreases drought area
over EAF and WAF and increases it over SAS. However, their co-
occurrence with Niño3.4+ has significant effects over multiple
regions. Co-occurring Niño3.4+/TNA− are associated with sig-
nificantly higher drought area over all regions but AMZ relative to
neutral conditions (gray arrows in Fig. 5a). In addition, the co-

occurring Niño3.4+/TNA− significantly (at 5% significance level)
increase drought area over SEA and CAM while Niño3.4+/IOD+ co-
occurrence significantly decreases drought area over EAF and
increases drought area over SEA, relative to Niño3.4+ alone
(indicated by green arrows in Fig. 5a). AMZ, which experiences no
significant change in drought area under Niño3.4+ relative to
neutral conditions, has a significantly higher drought area when
Niño3.4+/AtlNiño− or Niño3.4+/IOD+ co-occur. Similarly, WAF only
shows significantly higher drought area during co-occurring
Niño3.4+/TNA− and Niño3.4+/AtlNiño− but not during Niño3.4+

alone.
Unlike the influence on drought area, we find a more limited

influence of the individual occurrences of these modes on
drought intensity over most regions, except an increase in
drought intensity over WAF during TNA− and AtlNiño− and over

Fig. 5 Influence of individual and co-occurring modes of variability on regional drought characteristics. Box plots represent the
distribution of a drought area and b drought intensity across a subset of SREX regions with the largest effects of natural variability modes
during seasons with neutral conditions, individual occurrences of natural variability modes (AtlNiño, TNA−, IOD+, and Niño3.4+), and co-
occurring conditions (Niño3.4+/IOD+, Niño3.4+/AtlNiño-, and Niño3.4+/TNA), noted above each boxplot, from the CESM preindustrial
simulation. Here, we show a subset of six SREX regions which are significantly affected by these modes of natural variability. Gray arrows
indicate significant differences in the mean of distribution of drought area and intensity corresponding to various conditions relative to
neutral conditions at 5% significance level. Green arrows indicate significant differences in the mean of distributions between co-occurring
and Niño3.4+ conditions at 5% significance level. Black dots show the mean of the distribution in each boxplot.
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EAF, SEA, and WAF during Niño3.4+ relative to neutral conditions
(indicated by gray arrows in Fig. 5b). However, co-occurring
modes significantly increase drought intensity over all six regions
relative to neutral conditions. For instance, despite no substantial
difference in drought intensity over CAM and SAS between
Niño3.4+ and neutral conditions, co-occurring Niño3.4+/TNA−

lead to significantly higher drought intensity over these regions
and over SEA and WAF (indicated by gray arrows in Fig. 5a). In
addition, co-occurring Niño3.4+/IOD+ are associated with sig-
nificantly higher drought intensity over SEA and SAS and
Niño3.4+/TNA− are associated with significantly higher drought
intensity over CAM and SAS, relative to Niño3.4+ alone (indicated
by green arrows in Fig. 5b).

Influence of co-occurring modes on compound droughts
The individual and co-occurring influences of these modes on
regional drought characteristic also leads to the episodes of
compound droughts across ten SREX regions when at least three
regions simultaneously experience drought during the same
season (Fig. 6). The probability of experiencing compound
droughts increases approximately threefold during AtlNiño-

(probability= 0.25), TNA− (probability= 0.24) and Niño3.4+ (prob-
ability= 0.27) relative to neutral conditions (probability= 0.09)
(gray arrows in Fig. 6a), which is further amplified during their co-

occurrences. For instance, co-occurring Niño3.4+/IOD+ or
Niño3.4+/AtlNiño− increase the probability of compound
droughts by a factor of ~5 while co-occurring TNA-/ Niño3.4+

increase it by a factor of ~7 relative to neutral conditions. Overall,
the co-occurring Niño3.4+/TNA− conditions are associated with
the largest amplification of compound drought risk (~2.5 or
~150%) over their probability during Niño3.4+ conditions.
Similarly, the total compound drought area measured across all

ten SREX regions shows a significant increase during TNA- and
Niño3.4+ relative to neutral conditions (Fig. 6b). Niño3.4+

increases the probability of widespread droughts, events with
drought area in the top 90th percentile (~21%), to 0.19 compared
to ~0 during neutral conditions. Co-occurrence of other natural
variability modes with Niño3.4+ also substantially increase
compound drought area compared to neutral conditions. Most
notably, co-occurring TNA−/Niño3.4+ raises the probability of
widespread droughts by a factor of ~3 relative to Niño3.4+.
Likewise, co-occurrence of various ocean variability modes
amplifies the probability of severe compound droughts events
with the area-weighted average drought intensity across all
regions in the lowest 10th percentile (~−1.52) (Fig. 6c). Co-
occurring Niño3.4+/TNA− are associated with a 2.5 times higher
probability of severe droughts relative to Niño3.4+. The co-
occurring Niño3.4+/IOD+ and Niño3.4+/AtlNiño- also increase the
probability of severe droughts by a factor of ~2 and ~1.5,

Fig. 6 Influence of modes of variability on compound drought characteristics. The distribution of a number of regions under drought,
b drought area, and c drought intensity during seasons with individually occurring variability modes and co-occurring conditions noted
below each boxplot, from the CESM preindustrial simulation. Horizontal gray solid lines indicate the thresholds used to define a compound
(i.e., � three regions under drought, gray line), b widespread (i.e., events with >90th percentile of total area (~21%) across all ten regions
concurrently affected by drought, gray line), and c severe (i.e., average SPI across all drought affected areas < 10th percentile (~−1.52), gray
line) droughts. Text above the boxplots in a indicates the probability of compound droughts under each condition, b indicates the probability
of experiencing widespread droughts and c indicates the probability of experiencing intense droughts. For example, the probability of three
or more regions concurrently affected by droughts under neutral and Niño3.4+ conditions is 0.1 and 0.41, respectively. Gray arrows indicate
significant differences in the distribution of drought area and intensity corresponding to various conditions relative to neutral conditions at
5% significance level. Green arrows indicate significant differences in the distributions between the co-occurring conditions and Niño3.4+

conditions at 5% significance level. Black dots show the mean of the distribution in each boxplot.

J. Singh et al.

8

npj Climate and Atmospheric Science (2021)     7 Published in partnership with CECCR at King Abdulaziz University



respectively relative to Niño3.4+. Overall, these analyses suggest
that Niño3.4+ leads to the largest increase in the probability,
extent and intensity of compound droughts relative to the neutral
conditions, and the co-occurrence of IOD+, and/or TNA−, and/or
AtlNiño- with Niño3.4+ can significantly amplify these character-
istics through their influence on drought intensity and extent over
one or multiple SREX regions.

Physical mechanisms associated with compound droughts
We investigate the underlying physical mechanisms that connect
simultaneous precipitation anomalies over several terrestrial
regions with SST anomalies in various oceanic basins by analyzing
upper level (200 hPa) velocity potential (VP) and low-level (at 850
hPa) moisture flux convergence (MFC) anomalies corresponding
to the individual and co-occurring modes (Fig. 7). The VP describes
large-scale horizontal convergence and divergence centers of the
atmospheric circulation and is particularly useful in identifying
anomalies in the tropical circulations. It is well known that El Niño
modulates tropical/sub-tropical precipitation via forcing anomalies
in the Walker circulation56,57. Climatologically, the strongest
upper-level divergence centers (also known as the ascending
branches of the Walker circulation) during the boreal summer are
located in the western Pacific and eastern Indian Oceans and their
subsiding branches are located in the eastern Pacific, south-
western Indian, and Atlantic Oceans (Fig. S8). These upper-level
divergence centers coincide with the strong monsoon-driven

convection across Asia. During Niño3.4+, the ascending (subsid-
ing) branches of the Walker circulation in the western Pacific and
eastern Indian (eastern Pacific and south Atlantic) weaken, leading
to anomalous upper level convergence (divergence) anomalies
that are reflected in the positive (negative) VP anomalies (Fig. 7a).
Such changes in the tropical circulations weaken boreal summer
monsoons, reduce low-level moisture convergence and conse-
quently, support drier conditions over those regions (Fig. 7a, e).
The associated anomalies in the South Atlantic high also induce
changes in the trade winds over the equatorial Atlantic which
influence moisture supply over AMZ, CAM, and WAF (Fig. 7e).
The co-occurrence of AtlNiño− with Niño3.4+ noticeably

amplifies the positive VP anomalies over WAF during Niño3.4+

and reduces the anomalous ascent of the Walker circulation over
CAM and AMZ, (Figs. 5a and 7f). These circulation changes along
with cooler than normal SSTs in the region lead to reduced
moisture convergence, expanding the precipitation deficits over
these regions relative to during Niño3.4+ (Figs. 4e, f and 7e, f). Co-
occurring Niño3.4+/TNA− exhibit the strongest and most wide-
spread positive VP anomalies over the studied regions that
influence the large-scale monsoon circulations (Fig. 7a, c) and low-
level moisture availability (Fig. 7e, g), which further intensify the
strength of Niño3.4+-induced drying as reflected in Figs. 4g and
5b. Earlier studies also note that TNA− influences precipitation
over the African regions by altering the northward extent of the
West African Monsoon49 and moisture transport from the Atlantic
Ocean and Gulf of Guinea58, and over CAM through the

Fig. 7 Mechanism of compound droughts associated with co-occurring modes. Composite anomalies of a upper-level (200 hPa) velocity
potential (VP) and e lower-level (850 hPa) moisture flux convergence (MFC) during Niño3.4+ conditions. Shading indicates the moisture flux
convergence and arrows indicate winds. Differences of the VP and MFC composites associated with co-occurring b, f Niño3.4+/Atl Niño−,
c, g Niño3.4+/TNA−, and d, h Niño3.4+/IOD+ conditions relative to Niño3.4+ conditions.
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modulation of low-level moisture convergence over the Caribbean
region and the strength of the Atlantic northeasterly trades59. The
main influence of IOD+ is seen over the African and Asian regions.
IOD+ reduces (strengthens) the influence of Niño3.4+ on the
upper-level circulation over Africa (EAS and SEA), which reduces
(intensifies) the extent and intensity of dry anomalies (Fig. 5a, b).
Our findings are consistent with previous studies that have found
that IOD+ weakens the African Easterly Jet and strengthens the
Tropical Easterly Jet, while Niño3.4+ generally drives the opposite
response49. Similarly, the anomalously cool SSTs surrounding SEA
during IOD+ contribute to reducing the low-level moisture
convergence (Fig. 7e, h), and thereby amplify the regional drying
associated with substantial weakening of Walker circulation60.
Overall, we note that the simultaneous occurrence of other modes
of ocean variability oftentimes intensifies and/or expands the
large-scale circulation anomalies associated with Niño3.4+, result-
ing in more intense or widespread moisture deficits over several
regions.

SUMMARY AND CONCLUSIONS
Spatially compound extremes impose amplifying pressures on the
disaster risk management resources and the global food system.
As the impacts of such extremes are increasingly being
recognized, recent studies have started to investigate their
probability of occurrence and associated mechanisms7,12,14,18,24.
While previous studies have focused on the mechanisms of
compound temperature extremes across the mid-latitudes18, we
examine the drivers of compound droughts across ten SREX
regions that predominantly experience summer precipitation with
high variability, identified based on the Shannon Entropy index.
We use the 38-year observational record and an 1800-year CESM
preindustrial climate simulation to examine the characteristics of
compound droughts and the influence of natural ocean variability
modes. We identify 11 historical compound droughts in the
observational records, of which seven are associated with strong
El Niño conditions. In addition to the central role of El Niño in
driving these events, our analysis based on observational and the
preindustrial simulation demonstrates substantial influence of
three other modes of ocean variability—IOD, TNA, and AtlNiño
conditions—that amplify various characteristics of regional
droughts and global occurrences of compound droughts.
El Niño leads to a significant increase in the drought area and

intensity over the largest number of regions relative to the other
modes of natural variability (Figs. 3 and 5), and in turn, increase
the probability of compound droughts by a factor of ~3,
compared to their probability during neutral conditions (Fig. 6).
Additionally, El Niño heightens the probability of widespread and
severe droughts to 0.19 and 0.17, respectively, relative to 0 during
neutral conditions. Other modes of natural variability show a
varying influence on drought extent and intensity over specific
regions and therefore, by themselves have an overall smaller
impact on the probability of compound droughts compared to the
impact of El Niño. The TNA mode has the largest influence among
the three other modes, with TNA− significantly amplifies drought
area across CAM and SEA, and drought intensity over CAM and
SAS during its co-occurrence with El Niño, contributing to a 2.5-
fold, 3-fold, and 2.5-fold increase in probability of compound,
widespread and severe droughts, respectively (Fig. 6). In contrast,
because IOD+ dampens the influence of El Niño on drought area
in EAF but amplifies it in SEA, and its co-occurrence with Niño3.4+

leads to a relatively moderate 1.6-fold increase in the probability
of compound, widespread, and severe droughts (Fig. 6).
Overall, our analyses reveal the importance of considering other

modes of ocean variability in addition to El Niño for assessing the
risk, extent, and severity of compound droughts. We highlight a
few caveats and limitations of this study. First, because of the
relatively small sample size of the precipitation record in several of

the study regions, our analysis of the individual and combined
influence of natural variability modes largely depends on the long
preindustrial climate simulation. Second, although the CESM
simulation largely captures the relationship between various
modes of variability considered in this study, it demonstrates
stronger than observed correlations between TNA and ENSO, and
IOD and ENSO at different lead times. Third, while we utilize the
CESM model, which is one of the most skillful climate models in
representing El Niño conditions48, we do not investigate
intermodel differences in the identified relationships that may
arise due to varying representations of precipitation processes,
natural variability characteristics and teleconnections. Four, we do
not consider the potential lead-lag relationships between some of
these modes of variability and their regional impacts on
precipitation45,61–63. Efforts to comprehensively assess these
relationships and interactions between modes on various time-
scales can support predictability efforts. In addition, our future
work will also focus on investigating the physical processes
underlying the interactions between these modes and the
regional and global impacts of their co-occurrence.
Compound droughts have the potential to induce synchronous

crop failures and simultaneously cause other impacts across
various societal sectors in multiple regions, leading to cascading
global consequences. In the backdrop of the global interconnec-
tivity of our socio-economic and physical systems, our study
highlights the importance of considering the occurrence of and
interactions between multiple modes of natural variability that
represent the large-scale state of climate in characterizing the
compound drought risks and their impacts on global food
security, rather than solely focusing on individual modes that
drive region-specific droughts. Our study presents the first step
towards understanding the factors that influence compound
droughts and their characteristics, which can help understand
how they might change in response to the projected increases in
extreme El Niño conditions47 and positive IOD conditions64.
Understanding the factors that shape the characteristics of
compound droughts have important implications for enhancing
society’s resilience to the multitude impacts of droughts including
food insecurity and water scarcity. A better understanding of
compound drought risks is relevant for informing agriculture
insurance companies to design more optimal crop insurance
schemes, which are presently based on the historical probabilities
of extreme events in individual regions without considering their
spatial relationships. By identifying how interactions among
different modes of natural variability can influence compound
droughts, our study highlights the potential for seasonal predic-
tion of such events to aid in the management of their impacts.
Several modes of SST variability have skillful predictions at varying
lead times including up to 9-months for El Niño39, up to 6 months
for the IOD40 and 4 months for tropical Atlantic Ocean SSTs41.
Timely predictions of droughts and drought-induced shocks in
agricultural production will help manage potential food insecurity
in several vulnerable regions42. Additionally, predictions of such
events have implications for international trade, where the
agribusiness industry and grain producers can get enough time
to minimize the economic losses due to anticipated disasters.

METHODS
Data
We primarily use precipitation from the widely-used high-resolution
(0.25° × 0.25°) Climate Hazards group Infrared Precipitation with Stations
(CHIRPS version 2) dataset (1981 to present). The CHIRPS daily precipitation
dataset has been used for the assessment of daily, monthly, seasonal, and
annual precipitation characteristics in several regions of the world65–68.
CHIRPS blends satellite-based precipitation estimates with in situ observa-
tions, and models of terrain-based precipitation modification to provide
high resolution, spatially-complete, and continuous long-term data from
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1981 to present, providing distinct advantages over rain-gauge-based
products that include variations in station density or remotely sensed data
that have a limited temporal extent69,70.
In order to establish the robustness of our findings, we also compare our

analyses with data from the Climate Prediction Center (CPC; 0.5° × 0.5°) and
Climatic Research Unit (CRU; 0.5° × 0.5°), by comparing the Standardized
Precipitation Index (SPI) across all ten SREX regions from all three datasets
(Fig. S9). The SPI from CHIRPS and CRU are strongly correlated (ρ > 0.72)
over all regions but CPC-based estimates exhibit comparatively lower
correlations over some regions including EAF, WAF, SAS, and EAS. We find
that CPC-based SPI does not capture documented droughts over AMZ71,
SAS72 during the record breaking El Niño year 2015, and over SAS73, EAF74,
and EAS75 in another well-known El Niño year 2009 (Fig. S9). Therefore, of
these three datasets, we use CHIRPS for the remainder of our analysis.
Further, while the Global Historical Climate Network has station-data
availability over a longer period of time over some regions, we do not
include it in this analysis due to the non-uniform density of stations across
the study area, and temporal discontinuities in data availability. We obtain
sea surface temperatures (SST) from the National Oceanic and Atmospheric
Administration (NOAA) High Resolution (0.25° spatial resolution) Optimum
Interpolation (OI) SST dataset version 2 (V2), which has temporal coverage
from 1981 to present76. Although our observational analysis is based on
precipitation from CHIRPS and SST from OI NOAA V2 due to their finer
spatial resolution, we perform complementary analyses with the long-term
observed precipitation from CRU77 (0.5° spatial resolution) and SSTs (2°
spatial resolution) from Extended Reconstructed Sea Surface Temperature
(ERSST) NOAA V544 during 1901–2018.
Given the limited length of the observed record, we further characterize

the influence of various SST variability modes on precipitation variability in
the ten SREX regions using an 1800-year preindustrial simulation from the
CESM46. Since the simulation has constant preindustrial climate forcing, it
isolates the influence of unforced natural climate variability from
the confounding influence of changing external climate forcings46. We
select the CESM model simulation because it is one of the most skillful
modern climate models in reproducing El Niño behavior and its
teleconnections47,48.

Selection of regions
We examine compound droughts across ten SREX regions4,9,78, which are
selected based on the similarity in their precipitation characteristics.
Specifically, we consider regions that show high variability in summer
precipitation and receive a majority of their precipitation during the
summer season. To identify the subregions that meet these criteria, we
compute the Shannon Entropy Index for summer season precipitation,
which is a concept drawn from information theory to measure the
variability of a random variable79. The Shannon Entropy index is defined as
measure of variability and has been used in hydroclimatic studies to
assess the spatial and temporal variability of precipitation time series80.
The Shannon entropy H can be computed as80,

H ¼ �
X

pi log2 pi; (1)

where p is the probability of each ith observation of the variable time series.
We restrict our analyses to regions that have high entropy values over
more than 30% of the total domain. Only ten tropical and mid-latitude
SREX regions meet this criterion. Within these regions, we only consider
areas with entropy values exceeding 4.86, which is the median entropy
value across the regions considered.

Drought definitions
We define drought at each grid cell based on SPI calculated with
accumulated summer season (June–September; JJAS) precipitation.
Following the method developed by McKee et al.81, the probability of
accumulated JJAS precipitation from all season is transformed to a
standard normal distribution. The estimated JJAS SPI is similar to the JJAS
precipitation anomaly, but the standardization makes it comparable across
space and time. The SPI time series is linearly de-trended to eliminate long-
term trends and capture interannual precipitation variability. We define a
grid cell under drought if its SPI is less than –1 standard deviation (σ) of the
long-term (1981–2018) mean SPI. We define a region under drought if the
fractional area experiencing drought (SPI <−1σ) within that region
exceeds the 80th percentile of the seasonal drought area distribution.
We choose the 80th percentile threshold to define a region under drought
because it captures several documented droughts across various regions

and, compared to higher percentile thresholds, it is relatively less sensitive
to the length of observational records. Additionally, higher percentiles
(>80th percentile) also substantially limit the drought events sample size,
limiting the statistical robustness of our findings. The drought extent is
defined as the fraction of the area within a region with SPI <−1σ and the
drought intensity is defined as the area weighted-average SPI value over all
the grid cells experiencing drought. We define compound droughts as at
least three of ten SREX regions simultaneously experiencing droughts. We
define widespread drought as events in which the fraction of total area
across all ten regions simultaneously affected by drought exceeds the 90th

percentile of the long-term average drought area. We define severe
drought as events in which average SPI across all drought affected areas
falls below the 10th percentile of the long-term average SPI.

Multiple linear regression (MLR)
We perform a MLR analysis to understand the individual influence of
Niño3.4, TNA, IOD, and Atlantic Niño indices on SPI across all SREX regions.
Using MLR, we compute the regression coefficients (slope) between SPI
(dependent variable) and these SST-based indices (independent variable).
To examine the multicollinearity in this multiple regression model, we
estimate the variation inflation factor (VIF) corresponding to each
independent variable82. We found relatively low VIFs for all four indices
(TNA—1.05; Atlantic Niño—1.17; Niño3.4—1.46; IOD—1.27), which sug-
gests a minimal concern of multicollinearity in our regression model.

Natural variability modes
The Niño3.4 index is used to define ENSO as the average SST anomalies
over 5°S–5°N, 170°–120°W83. The TNA index is estimated as the average
SST anomalies over 5.5°–23.5°N, 15°–57.5°W84. The Atlantic Niño (AtlNiño)
index is calculated from average SST anomalies over 5°S–5°N and 20°
W–0°85, and IOD is identified by using the Dipole Mode Index (DMI), which
is calculated as the SST difference between the western (50°–70°E, 10°
S–10°N) and eastern (90°–110°E, 10°S– Equator) equatorial Indian
Ocean22,86. The spatial extent of all regions used to calculate these indices
are highlighted in Fig. 1. All indices are calculated for the summer.
Niño3.4+ refers to El Niño conditions when JJAS positive SST anomaly over
the Niño3.4 region is >0.5σ. TNA− and AtlNiño− refer to cold phases of
these indices that are identified based on negative JJAS SST anomalies
(< −0.5σ) over their corresponding regions. IOD+ refers to positive IOD
when JJAS DMI is >0.5σ. Since, we aim to investigate the relationship
between modes of ocean variability and compound droughts on
interannual timescales, we remove the climate change signal by
detrending the observed timeseries of all modes, SSTs and SPI, which
makes the identified relationships more comparable between observations
and preindustrial simulations.
To understand the influence of El-Niño and its interactions with other

modes of natural variability on drought characteristics, we first categorize
all available seasons in the observed record into Niño3.4+-only and co-
occurring conditions. Niño3.4+-only conditions are defined as years when
Niño3.4+ is active while all other modes are in their neutral phase (<±0.5).
Co-occurring conditions are defined as years when Niño3.4+ co-occurs
with AtlNiño−, TNA−, or IOD+ conditions. There are two Niño3.4+ and
seven co-occurring conditions during the 38-year observed period. To get
a larger distribution of compound droughts under various anomalous
SST conditions, we examine these interactions in a 1800-year CESM
preindustrial climate simulation.
In addition, we categorize years based on the individual occurrences of

each variability mode, and their combined occurrences with Niño3.4+ to
understand their individual and combined influence on drought char-
acteristics relative to neutral conditions. Neutral conditions are defined as
years without any substantial phase of either of the four modes of ocean
variability. Niño3.4+/AtlNiño−, Niño3.4+/IOD+, and Niño3.4+/TNA− refer to
years when Niño3.4+ co-occur with AtlNiño−, IOD+, and TNA−, respec-
tively, while the other modes are in their neutral conditions.
We evaluate the lead correlations between each mode and JJAS SPI over

study regions during 1901–2018 to assess the validity of using
contemporaneous (JJAS) SSTs in each basin. Given that El Niño events
typically peak in winter87, we examine correlations between the 4-month
moving average of the Niño3.4 index starting from November of the
previous year to September of the current year (Fig. S10). Although some
regions show significant correlations at several month lag times, they
constitute a relatively small fraction of the all regions considered (~12%)
(Fig. S10a). The area with significant correlations between JJAS(0) (“0”
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refers to the months of the current year) SPI and ENSO increases
substantially with reduced lead time of the ENSO index. Specifically, ~40%
of the studied area shows the strongest correlation with instantaneous
impact of summer ENSO conditions49,50,88–90 (Fig. S10a). In addition, JJAS
(0) SPI shows the strongest correlation with contemporaneous ENSO (Fig.
S10b). Similarly, we assess the correlations of JJAS(0) SPI with other modes
of variability and find that the strongest and most widespread correlations
across all regions altogether are with contemporaneous IOD and Atlantic
Niño. The TNA index has its strongest correlations at a short lead time
though the correlations are not substantially different than during the JJAS
season (Fig. S10a, b).
We also note that there are some contemporaneous and lagged

correlations between ENSO and other modes of variability61–63(Fig. S11).
Consistent with previous studies, we find an insignificant contempora-
neous correlation between co-occurring AtlNiño and ENSO62,63 but weak
lead correlations up to 6 months in advance61. Further, we find
insignificant correlations between TNA and ENSO on most timescales in
observations. Correlations between IOD and ENSO are the strongest in
JJAS (Fig. S11a). The simulations generally capture these relationships but
indicate stronger than observed correlations between TNA and ENSO, and
IOD and ENSO at nearly all lead times (Fig. S11b). These lagged correlations
between modes61–63 highlight the potential for their predictability and
their associated regional precipitation anomalies91 and warrant further
investigation. However, our analyses are constrained to the influence of
contemporaneous states of all modes on regional precipitation, given the
overall strongest and most widespread influence of most modes on
regional precipitation in these regions. Our choice of using contempora-
neous SSTs follows numerous studies that have identified the importance
of contemporaneous Pacific, Atlantic, and Indian Ocean SST conditions on
monsoons, which govern precipitation over a majority of these
regions49,50,92,93.

Statistical significance
We use the permutation test to assess the statistical significance of the
differences in mean of drought characteristics during the occurrence of
various combinations of natural ocean variability modes94. Permutation
tests are becoming increasingly common to estimate the significance level
of certain statistical analyses95. The non-parametric permutation test does
not make any assumptions pertaining to sample size and distribution of
the data, and is therefore suitable for a variety of situations, including for
comparing distributions of different sizes, as is the case here. Here, we use
the difference in the means of the two distributions as the test statistic. We
first quantify the test statistic from the two original distributions and then
randomly permute the samples from the two distributions, and re-estimate
the test statistic from the resampled distributions. We repeat this
procedure 10,000 times to obtain an empirical distribution of the test
statistic, which represents the possible outcomes if the distributions were
totally random. If the original test statistic is higher (lower) than the 95th

(5th) percentile of the statistic from these permuted samples, we consider
the mean of the distributions to be significantly different at the 5% level.
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