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Abstract 12 

Obtaining accurate intra-censal estimates of population is essential for policy and health 13 

planning, but is often difficult in countries with limited data. In lieu of available census or other 14 

population data, environmental data can be used in statistical models to produce dynamic 15 

population estimates. In this study we compare the predictive accuracy of five model structures, 16 

including parametric and non-parametric models, to identify statistical modeling structures that 17 

most effectively incorporate ancillary data to estimate population density. Environmental 18 

covariates include land surface temperature, NDVI and density of rivers, roads or permanent 19 

water. Results demonstrate that a regression-based approach is preferred when previous 20 

population information is a covariate, but a non-parametric tree-based model provides more 21 

accurate estimates when population is used to train the model, but not as a covariate. This latter 22 

approach is important for regions with incomplete census data and has implications for 23 

economic, health and development policies.  24 

25 
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1.0 Introduction: 25 

Estimates of the distribution and growth of human population are invaluable. They are used as 26 

input to research-focused and operational applications, including emergency response, infectious 27 

disease early warning systems, resource allocation projections and food security analysis, to list 28 

only a few examples. However, obtaining reliable population estimates at the spatial and 29 

temporal resolutions required for many of these applications is a significant challenge. Census 30 

data, the primary source of population size, is limited in temporal frequency and is often 31 

incomplete or unreliable - particularly in less-developed countries - which causes considerable 32 

problems for policy planning and decision makers. For this reason, models that can refine 33 

existing estimates of human populations or that can estimate and project populations in areas that 34 

lack population data altogether are of considerable importance. 35 

 36 

To date, most approaches to intercensal estimates and postcensal projections can be categorized 37 

into one of five methods: cohort component, microsimulation, mathematical formulation, aerial 38 

interpolation or statistical modeling.  The choice of these methods has often been motivated by 39 

both the type of data available (direct vs. indirect data) and the type of estimate requested (total 40 

population, subnational, population characteristics, etc.).  Although these approaches are not 41 

mutually exclusive, they do provide a useful framework for discussion.  42 

 43 

The cohort-component method is the most common approach for creating intercensal and 44 

postcensal estimates, particularly in developed countries where baseline census data are regularly 45 

collected and more information on population growth components are available.  This method 46 

applies the basic demographic estimating equation (Pt = P0 + B – D + [I – E]), which consists of 47 
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estimates of the baseline population (P0), and (age-specific) births (B), deaths (D) and net 48 

migration (I – E) between the baseline and target year to provide population estimates requested.  49 

It is flexible to the extent that subgroups of the population can be estimated and projected – i.e., 50 

by age and sex, ethnicity, geographic subdivision, etc. When additional characteristics are used 51 

to define the cohort, the model is referred to as a multi-state model because individuals being 52 

projected forward may enter different states (e.g., married vs. unmarried).  These state-specific 53 

birth, death and migration rates are obtained in a variety of ways, including civil registrars, 54 

sample surveys, prior census data, UN model life tables and expert opinion. The cohort 55 

component method of population estimation may capture emerging demographic trends that 56 

models based on aggregate measures of population would miss. 57 

 58 

When a large number of states are requested for a population estimate or projection, it is often 59 

preferable to use microsimulation as opposed to a multi-state cohort component model. 60 

Microsimulation produces population estimates by modeling specific individuals and life events 61 

of those individuals (O’Neill et al., 2001). Because the method is so computationally intensive, 62 

the simulation is often limited to a sample of the population, which is then scaled to match the 63 

total population. Microsimulation is impractical when only a limited number of states are 64 

desired, but may be preferable for small-scale state-intensive problems. 65 

 66 

Mathematical formulation seeks not to model specific individuals or groups of individuals, but 67 

rather to define patterns of aggregate population explicitly using mathematical functions, which 68 

can be calibrated for a given area, but that more generally describe observed spatial patterns of 69 

population density.  The most common type of type of mathematical formulation is an estimate 70 
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of population growth based on extrapolation of recent census data. The approach has a 71 

transparency of formulation that makes it appealing for many applications. One example of an 72 

operational extrapolation-based population model is the Gridded Population of the World: Future 73 

Estimates 2015 (GPW2015), which produces gridded population estimates globally at 2.5 arc-74 

minute quadrilateral grid resolution (Balk et al., 2005). The product uses a simple geometric 75 

extrapolation from the most recent census data (1990 or 2000) on the smallest available sub-76 

national grid. The authors acknowledge that geometric extrapolation is “not typically employed 77 

for longer-term projections because it lacks information useful for the longer-term adjustments to 78 

population composition and dynamics” (Balk et al., 2005). The GPW2015 was produced as the 79 

first spatially distributed global population projection to provide decision makers and researchers 80 

information on which they may base their policies and analysis.  81 

 82 

Aerial interpolation differs from extrapolation models in that it is used to transform data from 83 

one set of spatial units into another, rather than to project trends. In the context of population 84 

modeling this entails distributing administrative level census data across a finer scale grid to 85 

produce a detailed population surface. The most commonly used technique for producing 86 

heterogeneous population density surfaces from homogeneous zones is dasymetric mapping, 87 

which uses ancillary information to divide each zone of the source data into subzones (Eicher 88 

and Brewer, 2001). Each subzone is assigned a population density such that the sum of 89 

population over all subzones equals the population of the original source zone (Langford et al., 90 

1991). The LandScan Global Population Project employs the dasymetric mapping method to 91 

disaggregate census population measurements from administrative tracts to 1 km resolution 92 

(Dobson et al., 2000).   93 
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 94 

An interesting feature of LandScan is that the model incorporates a variety of remotely sensed 95 

data including information about nighttime lights, uninhabited areas, density of roads, slope and 96 

land cover. This use of remotely sensed data from aircraft or satellite has a fairly long tradition in 97 

population modeling. Early uses of remote sensing for population estimation were logical 98 

extensions of aerial photography, which has been used to count dwellings since the mid 1950s in 99 

areas without reliable population information (Boudot, 1993; Puissant, 2010). Following from 100 

this, high-resolution remote sensing was used to disaggregate population counts in urban spaces 101 

under the assumption that areas with similar land cover will have similar population densities. In 102 

recent years, remote sensing has become a prominent source of environmental information, 103 

including land use and transportation patterns, which can provide valuable input to population 104 

models.   105 

 106 

In LandScan, remotely sensed data are used to inform spatial disaggregation of existing 107 

population estimates. But remote sensing is perhaps even more valuable for statistical population 108 

models in which remotely sensed data are used to estimate population densities as opposed to 109 

disaggregating them. The most common way that this is done is to relate the remotely sensed 110 

data to land use and to include that information in a regression-based model that is identified and 111 

trained using one dataset and evaluated using a separate dataset from a culturally and 112 

demographically similar area (Harvey, 2002; Lo, 2003). While remotely sensed data are often 113 

used to derive social or economic information relevant to population density, satellite 114 

observations may also be included directly in a population model, as demonstrated by Liu and 115 

Clarke (2002), who used high resolution satellite-derived reflectance and landscape texture 116 
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information to estimate population distribution within a single city. The inclusion of these 117 

remotely detected data-- either directly or indirectly-- allows modelers to draw insight into the 118 

underlying drivers of local population processes. This principle of drawing insight based on 119 

model structure differs markedly from the methodology underlying models based on expert 120 

knowledge, in which model structure is based on relationships assumed a priori.  121 

 122 

Unlike aerial interpolation and mathematical formulation, statistical modeling does not 123 

necessarily use population as a direct input for defining a population surface. Statistical modeling 124 

instead focuses on deriving the relationships between population density and external variables 125 

by using population data to train a model (Wu et al., 2005).  Importantly, the frequency with 126 

which updated estimates are produced by a statistical model is constrained by the availability of 127 

the covariate data and not by the availability of response variable data. This is a particular 128 

advantage for population modeling, for which the only available population information is often 129 

the decadal-scale census. By decoupling the temporal resolution of population density estimates 130 

from census frequency, modelers can capture the changing dynamics of local populations at a 131 

much finer time scale. The ability to move beyond disaggregating static population counts 132 

towards predicting population density has spatial benefits as well, allowing modelers to produce 133 

population estimates for regions that lack prior population data altogether. 134 

 135 

Previous work has demonstrated the benefit of including ancillary data in statistical population 136 

modeling (Sanderson, 1998; Harvey, 2002; Lo, 2003;). Building on that work, and with a 137 

particular focus on model structure, we compare the predictive accuracy of five different 138 

statistical modeling techniques—including both parametric and non-parametric methods—in an 139 



 7 

effort to identify and understand alternative model structures for population prediction in data-140 

limited regions. Each model in the study uses a range of covariates to predict population density 141 

at the district level in Peru. In the following sections we will describe data sources and the 142 

required data processing (Section 2), detail the structure of the models included (Section 3), 143 

present and discuss results (Section 4), and offer general conclusions (Section 5). The analysis 144 

presented in this paper reveals that the presence or absence of previous census data transforms 145 

the problem of statistical population modeling from one that benefits most from a geometric 146 

extrapolation of previous population data to one that benefits most from a non-parametric model 147 

and a wide range of covariates. These results are relevant for regions with limited reliable census 148 

data, particularly those experiencing rapid population redistribution towards frontier zones, as is 149 

the case in many parts of Peru. 150 

 151 

2. Data 152 

2.1 Scope of the Study 153 

Peru is divided administratively into regions then provinces followed by districts. The variables 154 

used, discussed below, were calculated annually at the district level for five regions (Ayacucho, 155 

Cusco, Madre de Dios, Arequipa and Apurimac). Combined, these regions contain 42 provinces, 156 

417 districts and span a reasonable cross section of Peruvian land cover (see Fig. 1). The country 157 

exhibits a broad range of climatic variability with land cover including rainforest, mountains and 158 

coastal areas. The five regions included in the study were chosen to be representative of Peruvian 159 

topography and to avoid regions that were redistricted during the study period. Our application 160 

of population modeling to Peru is motivated in large part by the need for accurate population 161 

estimates and projections to inform malaria early warning systems and risk assessment currently 162 
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being developed for the Peruvian Amazon frontier. Accurate population estimates are critical for 163 

understanding and predicting malaria in such frontier zones (de Castro et al., 2007). However, 164 

the contributions are more general as will be discussed below. 165 

 166 

2.2 Response variable: 167 

Population density in 2007 was used as the response variable and was calculated using the 2007 168 

census data downloaded from the Peruvian Institute of Statistics and Information (El Instituto 169 

Nacional de Estadística e Informática; INEI). An administrative raster file containing 170 

information on the area of each district was obtained from the GADM Global Administrative 171 

Database (Hijmans et al., 2012). 172 

 173 

2.3 Covariates 174 

2.3.1 Population Density in 1993 175 

Population density obtained from the 1993 census1 was incorporated as a measure of population 176 

in a previous time period. When data are available, previous population metrics have obvious 177 

value for predicting current population. The population density for 1993 was calculated similarly 178 

to that for 2007. 179 

 180 

2.3.2 Geospatial Variables 181 

                                                
1 Peru conducted a census in 2005, but the methodology and results were considered flawed 
resulting in the 2007 census 
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A map detailing inland roads, rivers and permanent bodies of water in Peru was downloaded 182 

from the Digital Chart of the World2 and aggregated to the third administrative level (districts) to 183 

obtain the density of roads, rivers and permanent bodies of water in each district. 184 

 185 

Density of inland roads is an indicator of urbanization and accessibility for each district. 186 

Proximity to transportation corridors may be especially important in the Amazon where large 187 

tracts of forest make transportation difficult. 188 

 189 

Information on inland water was included based on the propensity that urban areas have for 190 

developing around bodies of water given that they are a valuable natural resource and method of 191 

transportation. Density of rivers may be a better predictor in countries outside the Amazon basin 192 

as the Amazon River and its tributaries may create a high density of water in fairly uninhabited 193 

provinces. Data for density of permanent bodies of water was categorized as a variable separate 194 

from density of rivers. 195 

 196 

2.3.3 Socioeconomic Variables 197 

While land use and topography may be important predictors of population density, they are 198 

unlikely to provide useful information for areas that have already been urbanized. A GDP index 199 

derived from the 2007 and 1993 censuses was downloaded from the INEI as an economic 200 

indicator for the analysis. Although the available GDP index is on a coarse spatial scale 201 

                                                
2 All data that originates from the Digital Chart of the World was made public in 2006, but has 

not been updated since 1992. Any significant change in urbanization (specifically density of 

inland roads) since 1992 is not reflected in the data. 
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(provincial), it may provide significant information on interannual variability not present in 202 

topographical data.  203 

 204 

2.3.4 Satellite Derived Variables 205 

Remote sensing provides a method for detailing landscape characteristics for each district, which 206 

may in turn be linked to the population density. Remote Sensing data collected by the MODIS 207 

Terra sensor was downloaded from the NASA Reverb portal. The two chosen characteristics 208 

were the Normalized Difference Vegetation Index (NDVI) and the daytime land surface 209 

temperature (LST). 210 

 211 

NDVI measures the difference between reflectance in the near infrared and the visible spectrum. 212 

The chlorophyll in healthy vegetation strongly absorbs visible radiation while the plant cell 213 

structure reflects it. NDVI may therefore be used both as a measure of vegetative distribution and 214 

as an indicator of vegetative health. The difference in vegetative distribution may also provide 215 

information on patterns of topographical features in the landscape, as vegetative differences are 216 

often indicative of topography. NDVI was available as a 1 km resolution gridded product, but 217 

was aggregated to district averages using the administrative shapefile to match the resolution of 218 

the other covariates. Data were available as monthly composites. For this study a consistent 219 

month during the dry season was chosen (July). 220 

 221 

Daytime LST may act to differentiate between the diverse land cover of Peru, which includes 222 

open water, bare soil, forested areas, rock and urban areas. The diurnal thermal signal of each 223 

category of land cover may provide insight into the potential habitability of that area. Daytime 224 
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LST can also give an indication of the heat island effect of cities for some of the smaller districts 225 

in which impervious cover is an appreciable percent of total surface area. LST was available at 1 226 

km resolution in 8-day composites. For this study the same composite was chosen from each 227 

year (mid July to match the NDVI). LST was aggregated to the district level using the GADM 228 

Global Administrative Areas shapefile. 229 

 230 

2.4 Data Consistency 231 

Not all of the data from the Digital Chart of the World matched the INEI districting, although 232 

discrepancies between datasets were minor. After standardizing the data, out of 417 districts 233 

present in each year (according to the most recent INEI report) 412 districts mapped to those in 234 

the Digital Chart of the World. Districts that were omitted from the study include Jesus 235 

Nazareno, Llochegua, Huepetuhe, Majes and Kimbiri. The missing districts were due to 236 

redistricting between 1992, the creation of the Digital Chart of the World, and the 1993 census.  237 

 238 

3.0 Model Structures 239 

Understanding and selecting the appropriate model structure is perhaps the most important 240 

decision in the process of population modeling. The fundamental act of choosing a model 241 

structure creates a lens through which all subsequent data will be interpreted and will 242 

significantly affect the understanding of covariate influence. The most appropriate model 243 

structure often depends on the data available. In this analysis, five regression and tree-based 244 

models were chosen to explore how predictive accuracy and variable importance changes in the 245 

presence or absence of population information. The regression-based model structures include a 246 

generalized linear model (GLM), a generalized additive model (GAM), and a multivariate 247 
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adaptive regression spline (MARS) structure. The tree-based models include Random Forest 248 

(RF) and Bayesian additive regression tree (BART). A no model alternative was also included in 249 

the suite of models for reference.  250 

 251 

The models were run twice: once with population density from 1993 included as a covariate, and 252 

once with it excluded, leaving only socioeconomic and environmental covariates. These two 253 

analyses are hereafter referred to as being with or without population data, although neither uses 254 

current period population information to estimate population density. 255 

 256 

3.1 Generalized Linear Models (GLM) 257 

A GLM is a linear function of the form E(Y) = g-1(Xβ) + ε, where Y is the vectorized form of the 258 

response variable, X is the covariate matrix, β is a vector of coefficients, g is the link function 259 

and ε is a vector of the normally distributed errors (Cameron and Trivadi, 2005). In this case β 260 

may be interpreted as the relative influence of each variable. While the model may include a link 261 

function relating the covariates to the response variable, for the purposes of this model the 262 

response variable was assumed to follow a Gaussian distribution so the identity link function was 263 

used. 264 

 265 

3.2 Generalized Additive Models (GAM) 266 

A GAM is an extension of the GLM, in which the assumption of linear relationships between 267 

covariates and response variables is relaxed by replacing the link function with a nonparametric 268 

smoothing function, ƒ(X), such that the form of the function becomes Y = ƒ1(X1) + ƒ2(X2)+ …+ 269 

ƒn(Xn) + ε (Hastie et al., 2009). In this case a cubic spline was chosen for the nonparametric 270 
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smoother with restricted degrees of freedom. In this way the GAM allows for non-linear 271 

relationships between the covariates and response variables. 272 

 273 

3.3 Random Forest (RF) 274 

Tree-based methods are often most useful for models that are highly non-linear. The most basic 275 

tree-based structure is the Classification and Regression Tree (CART), which recursively 276 

partitions the data into i subspaces and applies a very simple model to each subspace. If the loss 277 

measure used is the sum of squares, the model takes the form Ci = mean(Yi|xi∈Ri) where Ci is the 278 

variable to be predicted in subspace Ri, Yi is the set of response variables on which the model is 279 

trained in that subspace and xi is the matrix of the associated covariates. One downside of CART 280 

is that the hierarchical nature of the model means relatively small changes in the data set can 281 

result in drastically different partitions within the data space, which makes drawing insight from 282 

the model structure difficult. One approach to reduce the variability inherent in predictions from 283 

CART models is to use model averaging based on bootstrapping, a method known as bagging 284 

(Hastie et al., 2009). The RF model structure is similar to a bagged CART method, except that a 285 

random subset of variables less than the total number of variables are chosen to use at the 286 

splitting point for each tree. This produces uncorrelated trees (although not perfectly 287 

uncorrelated) such that the aggregate result is a reduction in the variance (Breiman, 2001). 288 

 289 

3.4 Multivariate Adaptive Regression Splines (MARS) 290 

MARS is an extension of the generalized linear class of models that allows for nonlinearity in the 291 

relationship between covariates and response variable by way of multiple basis functions that 292 

take the form (x-t)+ or (t-x)+ where t is a “knot point” determined in the model training process 293 
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and x is the covariate. The model first enumerates basis functions to fit the data and then prunes 294 

back these functions, as would a tree-based model (Friedman, 1991). This gives the model the 295 

form Y = !0 + !mhm (X )
m =1

M

" , where hm(X) is a basis function, or product of basis functions, and 296 

βm are coefficients estimated by minimizing the sum-of-squares. 297 

 298 

3.5 Bayesian Additive Regression Tree (BART) 299 

The BART model is a “sum-of-trees” method taking the form of Y = ƒ(X)+ e, where ƒ(X) is the 300 

sum of many trees.  The model places a prior probability on the nodes of each tree such that the 301 

tree is constrained to be a “weak learner” (i.e. biasing the tree towards a shallower, simpler 302 

structure). This constraint ensures that each tree contributes only minimally to the overall fit. The 303 

model is designed to produce a flexible inference of an unknown ƒ(X). 304 

 305 

3.6 Mean Model 306 

Each of the previously described models was compared against the no-model mean alternative. 307 

The no-model mean estimate was simply calculated as the mean of available response data in the 308 

holdout dataset. 309 

 310 

3.7 Model Evaluation 311 

The predictive accuracy of each model, both with and without population information, was 312 

evaluated using 100 repetitions of a random10-fold cross validation (CV) holdout analysis. Only 313 

one year of census data was available for the response variable dataset, meaning that every 314 

prediction made in the CV analysis was an out-of-sample prediction. This strengthens the results 315 
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of the analysis for predictions made in 2007, but leaves the generalization of these results to 316 

other time periods untested.  317 

 318 

The suite of models is assessed using mean absolute error (MAE) as a measure of general model 319 

accuracy as well as root mean square error (RMSE). The difference between MAE and RMSE is 320 

used to assess the skill of each model in providing population density estimates for the highest 321 

density districts. In evaluating the results of each analysis, reported levels of statistical 322 

significance are measured to a significance level of 0.05 following a Bonferroni correction for 323 

multiple pair-wise comparisons and are based on MAE (See Tables 1 and 2). 324 

 325 

The diversity of model structures included in the analysis required the use of multiple measures 326 

of variable influence in the analysis of the results.  The relative importance of each variable in a 327 

GLM was measured using the β coefficient from the final fitted model. In this case the β 328 

coefficient indicates the linear relationship between covariate and response variable (see Sect. 329 

3.1). Variable influence in the MARS model was based on the contribution of a variable towards 330 

reducing the model’s generalized cross-validation (GCV) score. GCV is an approximation of the 331 

leave-one-out cross-validation using a squared error loss measure (Hastie et al., 2009). The 332 

measure of variable importance used for a GAM was the increase in MSE that results from 333 

removing a specific variable. Variable importance in the RF model was evaluated using two 334 

separate indices. The first is based on perturbing each variable and recording the effect on the 335 

out-of-bag accuracy as measured by MSE, while the second measures the decrease in node 336 

impurities- measured by the residual sum of squares- that results from splitting on a variable. 337 

Variable importance in the BART model was evaluated by the number of times a variable was 338 
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used as a splitting decision in a tree, averaged over all trees. Due to the discrepancy between 339 

measures of variable influence, direct comparisons between models cannot be made. Instead, the 340 

shift in relative variable influence between analyses is explored within each model to understand 341 

how each model is affected by the presence of population density information in the covariates. 342 

 343 

4.0 Results and Discussion 344 

 The differences in model accuracy as evaluated by RMSE as opposed to MAE are minimal in 345 

terms of ordinal rank but entail consistently larger mean error estimates with increased standard 346 

errors. The systematic difference in model accuracy as measured by MAE and RMSE (results 347 

not shown) implies that the skill of each model varied significantly as a function of the districts 348 

chosen for the holdout sample and in fact that a minority of the holdout samples were driving the 349 

model estimate errors, a result that most likely stems from the out-of-sample nature of 350 

predictions imposed by the limited dataset. An expanded dataset - either a greater number of 351 

districts or greater number of years – may help to reduce the standard error of the model 352 

estimates.  353 

 354 

Despite the fact that the regression based models (GLM, GAM and MARS) provided the most 355 

skilled predictions of population density when 1993 population density was included in the 356 

covariates, these models provided among the worst predictions when no population information 357 

was included (see Tables 1 and 2). In fact, when population density data was not included, none 358 

of the regression based models produced predictions that performed better than the no-model 359 

alternative (Table 2). This result indicates that when population information was not available 360 
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regression based models were unable to capture the relationship between indicator variables and 361 

current population density. 362 

 363 

In contrast to the regression models, the RF model – a non-parametric tree based model - 364 

provided among the most skilled estimates when 1993 population density was not included in the 365 

covariates, but among the least skilled estimates when it was (see Tables 1 and 2). Notably, the 366 

RF model was the only model to significantly outperform the no-model alternative when 367 

population information was not included. The shift in relative model performance indicates that 368 

the relationship between previous population density and current population density at a district 369 

scale can be modeled effectively using regression methods, but the relationships between 370 

ancillary variables and population density require a non-parametric model structure due to either 371 

nonlinearity or a large degree of variability.  372 

 373 

The covariate influence of all models was explored to understand the differences in variable 374 

importance between the two analyses.  Although the most direct measure of variable importance 375 

is model dependent, which precludes direct comparisons between measures of variable 376 

importance, relative comparisons between analyses are possible and instructive. When 377 

population density from 1993 was included in the covariates, GLM, GAM and MARS – the three 378 

models that provided the best population density estimates for the analysis– all indicated that 379 

previous population density was the most significant variable as assessed by their respective 380 

measures of variable importance (Table 3). This relative variable importance is unsurprising in-381 

and-of itself, but is an important point of comparison for evaluating the models that do not 382 

include 1993 population density information in the covariates. 383 
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 384 

When 1993 population information was not included in the analysis, nearly all of the models 385 

incorporated a greater number of covariates, many of which the models had previously excluded 386 

completely (see Tables 3 and 4). Random Forest – the model that provided the best population 387 

density estimates for the analysis - indicated that the majority of remaining covariates had 388 

comparable variable importance (Table 4). The RF model therefore compensated for a lack of 389 

previous population density information more effectively than regression-based models by 390 

incorporating information from nearly all of the available covariates.  391 

 392 

Random Forest population density estimates and model errors are explored spatially and in their 393 

relation to actual district population density to better understand the performance of the model. 394 

Figure 2 demonstrates minimal spatial dependencies in the model errors with mixed performance 395 

in the mid-latitudes and a consistent overestimation of population density to the south in the 396 

region of Arequipa, particularly those districts surrounding the city of Arequipa. Figure 3 shows 397 

that RF systematically underestimated the population density of the highest-density districts and 398 

tended to overestimate population density of the mid- to low-density level districts. The 399 

overestimation bias for low-density districts is not surprising given the relatively small margin 400 

available for underestimation in such districts. The inability of the RF model to produce accurate 401 

population density estimates for the most population dense districts implies that the resolution of 402 

the analysis – which in this case is the district level – may have been insufficient to capture the 403 

upper extreme of population-density due to heterogeneity of the response variable within each 404 

district. Dense urban areas may account for the majority of a district’s population but a relatively 405 

minimal proportion of its land area, on which many covariates were based.   406 
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 407 

5.0 Conclusions 408 

The presence or absence of population information drastically changes the problem of population 409 

modeling from one that may be accurately modeled with only one or two variables using 410 

regression methods into one that benefits from multiple covariates in a non-parametric model 411 

structure. The intuitive implication of these results is that the appropriate model structure is 412 

dependent on the quantity and quality of previous population information. Somewhat less 413 

intuitively, the results demonstrate that population density estimates can be made for regions 414 

lacking previous population information altogether by training a non-parametric tree-based 415 

model on data from culturally and demographically similar areas. Such estimates are vital for 416 

decision makers operating in regions limited by incomplete or unreliable census data.  417 

 418 

The effort to create frequently updated, spatially distributed population estimates in data-limited 419 

regions is driving population modeling towards including an increasing number of variables. 420 

Current operational inter-census statistical models often either use demographic data or a single 421 

variable land-use classification scheme to estimate population densities. These methods may 422 

provide good results for projecting stable population growth, but will perform less well in areas 423 

of new development or those lacking reliable census data. For regions in which data limitations 424 

preclude the use of reliable demographic information, it is important that model structures 425 

effectively incorporate all relevant ancillary data. This paper demonstrates that for the five 426 

chosen regions in Peru there exists a stark difference between the appropriate model structure 427 

dependent upon the presence or absence of reliable census data. The predictive accuracy of tree-428 
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based non-parametric models in population modeling is an area that has been largely unexplored 429 

but which may yet prove tremendously useful for estimating population density. 430 



 
Figure 1: Political boundaries and topographical features of Peru. A) Classified land cover. B) 

Regions included in the analysis (Apurimac, Arequipa, Ayacucho, Cusco and Madre de Dios). 

C) Population density at the district level derived from the 2007 census. 
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Table 1: Model errors and p-values for models that included population data in the covariates. 
Shading indicates p-values corresponding to the t-test between the MAE distributions of each 
row-column paira. Orange (p-value > 0.10), Yellow (0.05 < p-value < 0.10) and Green (p-value < 
0.05) 

 

Mean 
Absolute 

Error 
Standard 

Error GLM GAM MARS RF BART Mean 

GLM 0.063 0.032 1.00E+00      

GAM 0.057 0.054 1.00E+00 1.00E+00     

MARS 0.056 0.039 1.00E+00 1.00E+00 1.00E+00    

RF 0.104 0.086 2.72E-04 1.07E-04 1.47E-05 1.00E+00   

BART 0.079 0.051 1.29E-01 4.72E-02 4.95E-03 2.14E-01 1.00E+00  

Mean 0.314 0.251 2.08E-15 7.42E-16 4.83E-16 2.15E-11 6.59E-14 1.00E+00 
 

                                                
a For example, the average MAE of the BART population estimates for this analysis is 0.079 with a corresponding 
standard error of 0.051. The MAE distribution for the BART model is statistically significantly distinct from GAM, 
MARS and the Mean model but is not statistically distinct from the GLM or RF MAE distributions. 
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Table 2: Model errors and p-values for models that did not include population data in the 
covariates. Shading indicates p-values corresponding to the t-test between the MAE distributions 
of each row-column pair. Orange (p-value > 0.10), Yellow (0.05 < p-value < 0.10) and Green (p-
value < 0.05) 

 

Mean 
Absolute 

Error 
Standard 

Error GLM GAM MARS RF BART Mean 

GLM 0.372 0.118 1.00E+00      

GAM 0.381 0.117 1.00E+00 1.00E+00     

MARS 0.339 0.139 1.00E+00 3.30E-01 1.00E+00    

RF 0.207 0.116 3.83E-18 7.65E-20 1.07E-10 1.00E+00   

BART 0.289 0.158 5.19E-04 7.70E-05 2.62E-01 6.99E-04 1.00E+00  

Mean 0.314 0.251 5.34E-01 2.42E-01 1.00E+00 2.62E-03 1.00E+00 1.00E+00 
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Table 3: Measures of variable importance when population data is included in the covariates. 
Missing numbers indicate variables that were discarded by the model during variable selection. 
Shading indicates the models producing the most accurate estimates. 
 

Previous 
 Popdensity Roads River 

Water 
X 

coordinate 
Y 

coordinate NDVI LST Day GDP Perm 
Water 

GLM Beta 
Values 0.979 - -0.0199 - - - - - - 

GAM Percent 
reduction in 

MSE 
505.22 -0.92 -0.87 -0.07 1.60 1.78 - - - 

MARS GCV 100 5 - - - - - - - 

RF Percent 
reduction in 

MSE 
22.19 1 2.26 1.35 3.9 3.33 3.74 2.15 1.21 

RF Inc. Node 
Purity 204.94 81.85 22.21 16.25 27.27 19.65 18.34 3.11 0 

BART Mean 
number of splits 68.28 19.89 13.84 11.95 10.76 11.71 31.21 17.88 27.29 

 

Table 4: Measures of variable importance when population data is not included in the covariates. 
Missing numbers indicate variables that were discarded by the model during variable selection. 
Shading indicates the models producing the most accurate estimates. 
 

 Previous 
PopDensity Roads River 

Water 
X 

coordinate 
Y 

coordinate NDVI LST Day GDP Perm 
Water 

GLM Beta 
Values NA 0.154 -0.184 0.117 -0.102 - - - - 

GAM Percent 
reduction in 

MSE 
NA -4.37 -1.30 - -2.33 -2.59 - - - 

MARS GCV NA 100 45.9 15.8 26 22.2 16.8 - - 

RF Percent 
reduction in 

MSE 
NA 3.19 -0.91 2.45 4.7 4.88 5.61 4.33 -0.63 

RF Inc. Node 
Purity NA 116.79 45.36 35.23 47.67 32.61 41.14 7.78 0.18 

BART Mean 
number of splits NA 55.03 28.43 18.09 33.01 30.33 39.62 37.19 26.61 
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Figure 2: Random Forest model error by district 
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Figure 3: Actual population density vs. RF estimated density with a 1:1 line plotted for reference
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