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ABSTRACT

Aim Agricultural practices have dramatically altered the land cover of the earth,
but the spatial extent and intensity of these practices is often difficult to catalogue.
Information on the distribution and performance of specific crops is often only
available through national or subnational statistics. Recently, however, there have
been multiple independent efforts to incorporate the detailed information available
from statistical surveys with supplemental spatial information to produce a spa-
tially explicit global dataset specific to individual crops. While these datasets
provide decision makers with improved information on global cropping systems,
the final global cropping maps differ substantially from one another. This study
aims to explore and quantify systematic similarities and differences between four
major global cropping systems products and the subsequent implications for analy-
ses dependent on those models.

Location This study was conducted at a global scale.

Methods Each global cropping systems model was assessed by latitude as a
measure of biophysical plausibility and each pair of models was compared using a
Gaussian filter to remove trivial spatial discrepancies. Model disagreement was
explored in relation to the interdependent input data of each model pair with a
particular focus on cropland extent. The influence of the observed model differ-
ences on subsequent analyses was demonstrated using model-dependent estimates
of the yield gap as an example.

Results The results of our analysis indicate that the choice of cropping systems
model is non-trivial: considerable differences exist between model-specific esti-
mates of the yield gap across nearly all climate zones and the average model
difference exceeds the average estimated yield gap in certain regions. The differ-
ences in crop-specific harvested area and yield products of each model are signifi-
cant, and mostly result from differences in the input datasets and downscaling
methodologies. In particular, the choice of dataset on cropland extent proved to be
influential regardless of the downscaling process employed.

Main conclusions Discrepancies in the final products of cropping systems
models are currently poorly understood, but have implications for basic policy
decisions relating to agricultural production and food security. The considerable
disagreement between models serves as a reminder of the ongoing challenges to the
creation of spatially explicit estimates of harvested area and yield based on crop
statistics. Our analysis helps shed light on the importance of model choice by
demonstrating the implications for further analyses that depend on cropping
systems models, and works to overcome these challenges by characterizing model-
dependent differences in harvested area and yield.
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INTRODUCTION

Cropland accounts for nearly 15 × 106 km2 of the earth’s land

cover – amounting to 12% of the earth’s ice-free land surface –

yet information on the distribution and performance of specific

crops is often only available through national or subnational

statistics (Foley et al., 2005; Ramankutty et al., 2008). Catalogu-

ing the increasing extent and productivity of cropland has

implications for analyses of food security, studies of land deg-

radation and resource management. While subnational statistics

provide information on raw quantities, they provide only

limited information that is useful for spatially explicit applica-

tions. Detailed mapping of the impacts of agriculture is vital to

understanding water usage (Rosegrant et al., 2002), nutrient

cycling (Bondeau et al., 2007; Liu et al., 2010), soil erosion (Yang

et al., 2003), loss of biodiversity (Foley et al., 2011) and the

impact on regional climate (Ramankutty et al., 2006; Voldoire

et al., 2007).

Remote-sensing products offer spatially disaggregated infor-

mation, but those currently available on a global scale are ill-

suited to many applications due to the limited separation of

crop types within the area classified as cropland. Recently,

however, there have been multiple independent efforts to incor-

porate the detailed information available from statistical surveys

with supplementary spatial information to produce a spatially

explicit global dataset specific to individual crops for the year

2000. These studies have generated increasingly sophisticated

results portraying the downscaling of crop production statistics

at a global extent at moderately high spatial resolution. Global

studies have been reported by Leff et al. (2004), Monfreda et al.

(2008), Portmann et al. (2010) and most recently by Fischer

et al. (2013) and You et al. (2014). While these datasets provide

analysts and decision makers with improved information on

global cropping systems, the final global cropping systems maps

differ from one another substantially. This spatial uncertainty is

not unique to cropping systems models and is, in fact, similar in

nature to the uncertainties arising from the multiple available

land-cover datasets. However, while there have been efforts to

characterize and quantify uncertainties in global land-cover

datasets (Giri et al., 2005; Fritz & See, 2008; Herold et al., 2008;

Fritz et al., 2011) there has to date been no such analysis for

global cropping systems models. To more completely character-

ize the uncertainties in global agricultural impacts it is necessary

to analyse each of the global cropping systems models, as has

been done with land-cover datasets.

This study aims to explore and quantify systematic similar-

ities and differences between four major global cropping

systems products and the subsequent implications for analyses

dependent on those models. The models used in this analysis

include the monthly irrigated and rainfed crop areas around the

year 2000 (MIRCA2000; Portmann et al., 2010), the spatial pro-

duction allocation model (SPAM2000; You et al., 2014), the

global agro-ecological zone (GAEZ) dataset (Fischer et al., 2013)

and the M3 dataset developed by Monfreda et al. (2008). We

begin with an overview of the methods and outputs of each

dataset before comparing the downscaling methodologies used

by each model. We further compare the input datasets used and

evaluate how interdependences between models may propagate

through the downscaling methodology. Following the qualita-

tive analysis, we quantitatively evaluate discrepancies between

the four models, focusing on wheat (analyses of rice and maize

are available in Appendix S5 in Supporting Information).

Finally, using the global yield gap as an example, we demonstrate

the influence of observed model differences on subsequent

analyses. We conclude with a summary and some recommenda-

tions for users of these products.

OVERVIEW OF GLOBAL CROPPING
SYSTEMS MODELS

Research on cropping system models has been reported at the

global scale by Leff et al. (2004), You et al. (2014), Monfreda

et al. (2008) and Portmann et al. (2010), while regional applica-

tions have been reported for Latin America and the Caribbean

(You & Wood, 2006) and sub-Saharan Africa (You et al., 2009).

This paper focuses on four global cropping system models: M3,

MIRCA, GAEZ and SPAM. Although differences in methodol-

ogy and final products can at times make comparisons between

the four models difficult, Table 1 provides an overview of each

model that may be used to infer basic similarities and differences

between products. A brief description of each model is included

in the following sections, with complete details available in Sec-

tions S1.1–S1.4 of Appendix S1.

M3 cropping system model

Out of the four global cropping systems models considered,

the M3 approach (Monfreda et al., 2008) attempts spatial

downscaling of the most complete coverage of crops (175 crops,

including tree and forage crops and managed grasslands) for

both harvested area and yield. M3 is described in the companion

paper to Ramankutty et al. (2008), which uses remote-sensing

products to construct a new dataset for croplands and pasture

around the year 2000 at a 5-arcmin resolution. The M3 dataset

applies minimal modelling to distribute subnational statistics of

yield and harvested area, opting for ease of interpretation and a

limit to requisite assumptions over complexity.

Monthly irrigated and rainfed crop areas around the
year 2000 (MIRCA)

MIRCA downscales 26 crops including two aggregate categories

of ‘other annual’ and ‘other perennial’ crops, all of which are

divided into rainfed and irrigated production areas. But unique

amongst the four approaches, MIRCA also performs a temporal

downscaling so as to provide estimates of rainfed and irrigated

area disaggregated by month (Portmann et al., 2010). MIRCA

uses M3 downscaled crop data results as its starting point for

allocating the total harvested area for each crop into rainfed and

irrigated areas, and apportions the M3 crop area allocations into

402 spatial ‘calendar units’ globally for which the MIRCA team
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has been able to compile unique sets of ancillary information on

irrigation, crop-specific irrigated water use, crop calendars and

cropping intensities.

Spatial production allocation model (SPAM)

SPAM has the most limited crop coverage, just 20 crops, but

downscales the area and yield for each crop into three different

production systems: (high-input) irrigated, high-input rainfed

and low-input rainfed. The low-input rainfed category is itself

further subdivided into low input and subsistence (You et al.,

2014). SPAM relies on a separate collection of subnational sta-

tistical data from that of MIRCA, focusing on increased coverage

in developing countries. The SPAM approach relies on con-

structing prior probabilities through expert elicitation and using

ancillary information – including crop prices, population

density (CIESIN, IFPRI and WRI, 2000) and crop-specific bio-

physical suitability (Fischer et al., 2013) – to distribute

subnational statistics within the cropland extent (Ramankutty

et al., 2008) based on a method known as cross entropy (Golan

et al., 1996; Lence & Miller, 1998; Zhang & Fan, 2001).

Global agro-ecological zones cropping system
model (GAEZ)

GAEZ downscales 23 crops including forages and other cereals

in either irrigated or rainfed production systems for both har-

vested area and yield (Fischer et al., 2013). GAEZ develops a

cropland extent independent from SPAM, MIRCA and M3 –

which all use the cropland extent from Ramankutty et al. (2008)

– but does so using many of the same source datasets as

Ramankutty et al. (2008). In the downscaling procedure, GAEZ

develops and relies on an extensive analysis of crop-specific

agro-climatic and edaphic suitability criteria. The model uses a

methodology mathematically comparable to the cross-entropy

framework of SPAM to incorporate ancillary information such

as population density, crop price and market access as a means

of distributing subnational statistics.

MODEL INPUT DATA AND
INTERDEPENDENCES

The major determinants of the potential reliability of

downscaling efforts are: (1) the quality of the cropland extent

dataset indicating the physical extent and area intensity of cro-

pland (e.g. share of cropland area in each 5-arcmin grid cell),

and (2) the resolution and reliability of the subnational crop

statistics. Each model builds on a common set of available data

as well as previous work in cropping systems modelling. Table 2

illustrates both the broad linkages and increasing sets of input

data and assumptions that each of the M3, MIRCA, GAEZ

and SPAM models relies upon. These linkages are briefly out-

lined in the following paragraphs, and are described in detail in

Appendix S2.

Differences between M3, MIRCA, SPAM and GAEZ persist all

the way back to basic data collection. As a matter of calibration,

all four datasets draw on FAOSTAT national data to provide

control totals for cropland area, the harvested area and yields of

specific crops. However, each product also expends considerable

efforts to collect subnational crop statistics to allow as detailed a

disaggregation of national totals within subnational administra-

tive boundaries as possible. This gives rise to region-specific

differences in the subnational data employed.

Table 1 Summary of the four global cropping system products.

M3 MIRCA SPAM GAEZ

Crops:

Crop classes (including

‘other’)

175 26 irrigated, 26 rainfed 21 23

Includes forages Yes Yes No Yes

Other category n.a. Other annual crops other

perennial crops

Other crops Other cereals, other crops

Grassland/pasture Ramankutty

pastureland*

managed grassland/pasture n.a. Bioenergy feedstock

Crop system

disaggregation

None Irrigated, rainfed Irrigated, rainfed

(commercial), rainfed

(non-commercial), rainfed

(subsistence)

Irrigated, rainfed

Production indicators Harvested area, yield Harvested area Harvested area, physical area,

yield and production

Harvested area, production

value, yield

Seasonality Annual Monthly Annual Annual

Data portal http://www.geog.mcgill.ca/

landuse/pub/Data/

175crops2000

http://www2.uni-frankfurt

.de/45218023/MIRCA

http://mapspam.info/

data/

http://www.gaez.iiasa.ac.at/

http://gaez.fao.org/

n.a., not applicable.
*See Ramankutty et al. (2008), the companion paper to Monfreda et al. (2008), for details.
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As a first step towards delineating crop-specific harvested

area and yield, each cropping system model defines a spatially

explicit layer of cropland extent, representing the proportion

of cropland in each 5-min pixel globally. Because each subse-

quent step in the modelling process relies on the definition

of cropland extent, the degree to which each pair of cropland

extent products agree represents an upper bound of

intermodel agreement on the spatial distribution of physical

crop areas. Ramankutty et al. (2008) provides the base dataset

for cropland extent in M3, MIRCA and SPAM, although

MIRCA and SPAM both modify the dataset. GAEZ does

not use the Ramankutty et al. (2008) data, but instead

runs a cross-sectional regression on a number of land-cover

distributions to derive weights, which are then applied in

an iterative adjustment procedure to match estimated

reference values such that the geographic and statistical data

are consistent.

Beyond the cropland area, MIRCA, SPAM and GAEZ

distinguish between rainfed and irrigated cultivations. All

three models use GMIA version 4.0, released in 2007 (Siebert

et al., 2010), to identify the location and area intensity of

irrigated production. Only SPAM and GAEZ, however,

constrain potential crop distribution using biophysical and

socio-economic suitability prior to allocating the harvested

area of each crop. These two models further incorporate ancil-

lary data such as road infrastructure, livestock density, popu-

lation density and distance to market as a means of

differentiating between production levels within cropping

systems.

METHODS OF ANALYSIS

Each model produces spatially explicit cropping system maps on

the same 5-arcmin grid; however, comparing these grids directly

(pixel-wise comparison) may produce artificially inflated dis-

agreement between products. While it is important to provide

some indication of pixel-specific performance, as this is the

format in which these models are often used, a pixel-specific

approach implicitly assumes each pixel to be a result independ-

ent of any neighbouring pixels.

Each product was therefore assessed using methods that

incorporate the spatial dimension of the data in biophysically

and mathematically meaningful ways in addition to a pixel-

specific comparison. To depict overall model agreement in raw

output, pixel-wise maps of model consensus were produced for

each crop at multiple harvested area thresholds. The sum of

crops or cropland for each product was evaluated by latitude to

account for the biophysical evolution of crops and cropland by

growing regions while still allowing for methodological differ-

ences in crop distribution. As a means of focusing our analysis

on regions of major production only, we masked areas with

fewer than 50 hectares of harvested area (in a 5-min pixel whose

size varies from about 5000 to 9000 hectares) prior to analysing

the final products of each model in a spatially explicit manner.

To compare the final distributions of each product with one

another, a Gaussian filter with a kernel density of three standard

deviations was applied to the results of each product prior to a

pair-wise comparison. Although the raw model outputs,

without filters or masks, and associated pairwise comparisons

Table 2 Input data layers of the four models.

Category Dataset M3 MIRCA SPAM GAEZ

National/subnational

statistics

FAOSTAT – national land use and

crop production statistics

X X X X

FAO AGRO-MAPS – subnational crop

statistics (SAGE and IFPRI collaboration)*

X Via M3 data X X

Additional crop distribution data X X X No documentation

available

Expert elicitation X

Cropland extent and

cropping systems

FAO AQUASTAT – national irrigated crop statistics X X X

GMIA – global irrigated land X X X

GLC2000 X M3 cropland extent

modified

M3 cropland

extent modified

X

Boston University MODIS-derived land cover X M3 cropland extent

modified

M3 cropland

extent modified

GAEZ suitability index X X

Ancillary data Population density FAO-SDRN (derived from

LANDSCAN 2003)

X

GRUMP** X

FAO ruminant livestock density X

Distance to market X

Crop prices X

*MIRCA2000 relies on M3 as does GAEZ ‘for selected crops in countries where more than 50% was covered by sub-national statistics’.
**CIESIN, IFPRI and CIAT.
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are available in Appendix S7 for reference, only the results of the

Gaussian filtered analysis will be discussed here. Pre-processing

the data using a Gaussian filter expands the analysis to incorpo-

rate neighbouring pixels, which allows for a more general analy-

sis of spatial trends in each model. The kernel density for the

Gaussian filters, i.e. the number of neighbouring pixels to con-

sider, was chosen following a sensitivity analysis using a kernel

density of one, two, three and four standard deviations.

The results of the sensitivity analysis and full documentation

of the implementation of the Gaussian filter are given in

Appendix S2.

Both the by-latitude and the pixel-wise Gaussian filtered

analyses were used to assess the cropland extent, the harvested

area and the yield for each product. SPAM, M3 and MIRCA all

rely on the Ramankutty cropland data, while GAEZ has devel-

oped its own cropland extent. The cropland extent delineates the

domain to which each product’s downscaling approaches are

applied, and therefore represents an important intermediate

step in the modelling process. Each model produced maps for

harvested area, but only M3, GAEZ and SPAM produced maps

of yield. Pairwise comparisons of each product were made

accordingly.

Previous analyses have made use of spatially distributed esti-

mates of harvested area or crop yield, but often use the chosen

cropping systems model as a reference dataset without

adequate attention to uncertainties in the model (Licker et al.,

2010; Neumann et al., 2010; Deryng et al., 2011; Foley et al.,

2011; Mueller et al., 2012). To date, no analyses have explored

the implications of model choice on final results. To illustrate

the importance of continuing work aimed at characterizing the

spatial distribution of crops and cropland, we calculated the

yield gap using each model following the methods of Licker

et al. (2010). This method entails using a set of climate zones to

sample existing crop yields to derive an area-weighted distri-

bution. The 90th percentile of this distribution is considered

the potential yield for all areas within the same climate zone.

The yield gap is then calculated as the difference between the

potential and the actual yield. Although the potential yield

could also be derived using crop model simulations, the

method of Licker et al. (2010) provides two primary benefits:

(1) it does not rely on a definition of cropland extent, which is

a requisite condition for our analysis, and (2) as a relatively

simple method, it may be applied at the global scale without

extensive region-specific calibration data, as is required

for many crop model simulations. For a relevant summary

of existing methods used to calculate the yield gap, as well as

the strengths and weaknesses of each, see van Ittersum et al.

(2013).

Following the calculation of the yield gap using each cropping

systems model, we computed the average yield gap YG( ), the

average difference in model-estimated yield gap (ΔYG) and

the ratio of average model difference to average model estimate

(the yield gap uncertainty ratio):

YG =
+ +( )M SPAM GAEZyg yg yg3

3

ΔYG

=
+ +( )− − −M SPAM GAEZ SPAM M GAEZyg yg yg yg yg yg3 3

3
,

uncertainty ratio = ΔYG

YG
,

where the subscript yg denotes the model estimated yield gap

calculated using each model. The quantity ΔYG YG would be

of interest for anyone seeking to intensify food production. As

the value of ΔYG YG approaches 1, the disagreement between

models approaches the estimated yield gap; values greater than 1

indicate that the average model disagreement is greater than the

average estimated yield gap.

As a means of differentiating between areas that have

already achieved large yields and those yet to realize a signifi-

cant proportion of their potential yield, we explore the relation

between ΔYG and existing yields using the ratio ΔYG Y ,

where Y is the average yield across all cropping systems

models. This measure of ΔYG relative to achieved yields will

complement both the existing absolute measure of ΔYG and

the uncertainty ratio ΔYG YG . Taken together, the three

indices provide both absolute and relative information on the

subsequent importance of model choice for calculating the

yield gap. Of particular importance are areas that display high

values over all indices, indicating that the estimated potential

increase in yields depends heavily on the model chosen and

contains a large degree of uncertainty both in an absolute

sense and relative to existing production. These are areas where

not only are the results of the yield gap analysis highly uncer-

tain, but the implications for global food security are also

relatively large.

The results of each analysis are described in following sections

for wheat. The results for rice and maize are given in Appendix

S5.

RESULTS

Cropland extent

Both Ramankutty et al. (2008) and GAEZ use the GLC2000

land-cover dataset as one input to the definition of cropland

extent: Ramankutty et al. (2008) blends GLC2000 with remote-

sensing observations from the BU-MODIS dataset while GAEZ

supplements the GLC2000 data with independent information

on the extent of protected areas, forests and agricultural extent

(see Table 2) (FAO, 2001; Friedl et al., 2002; Ramankutty et al.,

2008; WDPA, 2009). The methodological differences in delin-

eating cropland extent result in distributions of cropland that

broadly resemble one another but which differ significantly over

certain regions. The cropland extent maps largely agree in

Europe, southern Africa, East Africa and through much of

China. But the products significantly disagree in the Great Plains

of North America, West Africa, south-east Australia, India

and south-east South America (see Fig. 1). These differences

A comparative analysis of global cropping systems models
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propagate through each model to underpin the difference

between models that use the Ramankutty et al. (2008) dataset

and those using the GAEZ cropland.

Wheat: harvested area and yield

The four cropping system models displayed considerable dis-

similarities in the spatial distribution of wheat across all thresh-

olds of harvested area (see Fig. S1 in Appendix S5). The greatest

extent of disagreement relates to areas with only minimal har-

vested area and is largely due to differences in model method-

ology. M3 and MIRCA, which tend to spread harvested area

equally across all plausible croplands, account for the majority

of disagreement in these low-intensity harvested areas (see

Fig. S1 in Appendix S6). Agreement between models at low to

intermediate thresholds is mixed but does not clearly reflect

differences in cropland extent, nor are these inconsistencies

dominated by any single model. When considering the threshold

of highest intensity, SPAM differs significantly from the other

three models over western Russia. This difference is probably

due to both the downscaling methodology of SPAM and the

collection of additional subnational statistics.

Despite the dissimilarities explained by divergence of individ-

ual model methodologies, the differences in the harvested area

of wheat between GAEZ and the products that use the

Ramankutty cropland extent (see Fig. 2) largely mirror the dif-

ferences in cropland extent depicted in Fig. 1. Dissimilarities in

the harvested area of wheat for Australia, the United States and

Russia are nearly identical to those same differences in cropland

extent. The distribution of differences in harvested area between

any two models appears to be log-normally distributed, with the

possible exception of the MIRCA–M3 comparison, which indi-

cates that models are generally not systematically skewing or

biasing crop statistics in their spatial disaggregation procedures

for wheat (see inset histograms in Fig. 2). This is not always the

case for maize and rice (see Appendix S6). Figure 2 reiterates the

fact that discrepancies between the M3 and MIRCA products are

minor, which is to be expected given that MIRCA uses M3

output directly as model input (see Table 2). The relatively larger

inconsistencies between SPAM/M3 and SPAM/MIRCA – par-

ticularly in Europe, north India and coastal China – arise from

differences in downscaling methodology and subnational data

collection.

The estimated yields from M3, GAEZ and SPAM (MIRCA

does not produce estimates of yields) matched less well than

did the harvested areas from each product. GAEZ predicted

higher yields over the majority of the domain (see Fig. 3), but

particularly in the eastern United States, Europe, central/

eastern China and Australia (see Fig. 4). While M3 and SPAM

agreed to a greater extent, differences remained large over

much of Europe and Asia. The disagreement between all

models was by far the greatest in areas with minimal harvested

area (see Fig. S2 in Appendix S7), although these areas may be

considered less important to global food security analyses.

Overall, the model discrepancies for wheat yield were compa-

rable with those for the harvested area of wheat. However, the

models showed less agreement on the yield analyses for both

rice and maize when compared with the respective analyses of

harvested area (see Appendices S6 & S7). This is evidenced in

both the by-latitude comparisons and the histograms depicting

the distribution of differences (see Figs S3, S4, S8 & S9, and

associated histogram insets in Appendix S6). The observed dif-

ferences between models on even the fundamental spatial pat-

terns of harvested areas and yields serve as a reminder of the

ongoing challenges to creating spatially explicit estimates of

cropping system.

Discrepancies in the final products of cropping system

models have implications for basic policy decisions relating to

agricultural production and food security. Spatially explicit

models influence our current estimates of yield, our estimate of

potential yields and by extension our estimation of the yield gap.

Figure 5 illustrates the model-dependent differences, and result-

ing uncertainty, in calculating the yield gap (panel a) using both

an absolute measure (panel c) and with regard to existing yields

Figure 1 Differences between GAEZ and Ramankutty cropland extent after applying a Gaussian filter with a kernel density of three sigma.

W. Anderson et al.
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(panel b). Areas in which the yield gap uncertainty ratio

approaches 1 are areas in which uncertainty dominates the

estimate of the yield gap. However, it is equally important to

contextualize these uncertainties relative to existing yields and

using an absolute measure of model difference. Areas displaying

large values in all three panels indicate places in which the

model-estimated yield gaps disagree (panel c), where this dis-

agreement is a significant proportion of the estimated yield gap

(panel a) and in which the differences are important in the

context of existing food production systems (panel b).

The model-dependent uncertainty exceeds the estimated

yield gap in significant parts of every continent, indicating that

model choice is an important aspect of calculating the yield gap.

While some of the large values in panel A of Fig. 5 arise owing to

relatively high realized yields (and therefore small yield gaps),

this is not universally the case, most notably not in Sudan,

Nigeria, South Africa, Mexico, south-west India and northern

China. In parts of Russia, Kazakhstan and Belarus the model-

dependent uncertainty is high in an absolute sense and with

regard to existing production, but is a less significant proportion

of the overall yield gap (Fig. 5).

DISCUSSION

Calculation of the yield gap is only one example demonstrating

the importance of improving spatially explicit estimations of

harvested areas and yields. Other lines of research that will

benefit from improved spatially explicit estimates include, but

are not limited to, estimating the impact of climate change or

extreme weather on agriculture (Nelson et al., 2008), character-

izing past and future anthropogenic components of land-cover

change (Foley et al., 2005; Pongratz et al., 2008) and better

understanding the historical evolution of global farming

systems (Iizumi et al., 2014).

This study represents a first step towards reconciling global,

spatially explicit estimates of harvested areas and yields in that

we quantify and demonstrate the subsequent importance of

discrepancies in existing products. We first quantified model

Figure 2 Comparison of wheat harvested area by model following a Gaussian filter of three-sigma kernel density. Histograms in each
panel display the normalized percentage of pixels as a function of harvested area, y-axis (log scale) limits [0, 50%], x-axis limits [–5000,
500] ha.

A comparative analysis of global cropping systems models
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consensus, then analysed each product by latitude and using a

pair-wise Gaussian-filtered comparison and finally demon-

strated the impact that model choice has on subsequent food

security analyses. The results of our analysis indicate that the

selection of a cropping systems model is non-trivial: differences

between model-specific estimates of the yield gap are significant

across nearly all climate zones and the average model difference

exceeds the average estimated yield gap in select regions.

While aspects of the disagreement may be attributed to model

methodology, the choice of the dataset for cropland extent

proved to be influential regardless of the downscaling process

employed.

Despite interdependences between models, the input data

used in each model vary substantially. These differences include

fundamentally different subnational statistics used as a bench-

mark for each model, differences in the dataset on cropland

extent and differences in the ancillary datasets used to provide

supplementary information. The differences in input data are

one reason why the four models produce substantially different

results in many regions, and it is therefore imperative that

potential users understand the extent and quality of input data

used in each model.

Even in regions for which the four models rely on comparable

input data, differences in downscaling methodologies resulted at

times in large differences between products. Methodologies

ranged from a philosophy of using minimal modelling to dis-

tribute national and subnational statistics – opting for ease of

interpretation and a limit to requisite assumptions over model-

ling complexity – to one of including all available input datasets

in a cross-entropy framework to account for both crop-specific

biophysical and economic suitability. Our past experiences (e.g.

You & Wood, 2006) demonstrate that while more input data and

increasingly complex modelling don’t necessarily lead to better

or more accurate results, relying on only one input layer alone –

either cropland, crop suitability or irrigated area – may not

always be sufficient.

Because true crop distribution is unknown we are unable to

evaluate the performance of any single model. Our analysis

instead characterizes discrepancies among the four models and

provides information for researchers and analysts to make

knowledgeable decisions. Potential users of these cropping

systems products need to understand the differences in input

data and modelling prior to choosing the model that is best

fitted to their purpose. If the study requires coverage of a large

number of crops, potential uses may have to use M3 as it

covers over 175 crops while the other three products include

fewer than 30 major crops. On the other hand, if distinguish-

ing the production system is critical for the study, MIRCA,

SPAM and GAEZ may be used as M3 doesn’t separate irrigated

and rainfed productions. For the greatest detail on production

systems, SPAM provides data on crop harvested area and yields

disaggregated by system (irrigated, high-input rainfed, low-

input rainfed and subsistence). Although GAEZ models detail

production systems internally, they provide data to users at a

scale similar to MIRCA: disaggregated into irrigated and

rainfed only. In the studies which applied these modelling

results, M3 and MIRCA have been used (at times together) for

food security, climate change, water resource management and

yield gap analyses (Licker et al., 2010; Siebert et al., 2010;

Deryng et al., 2011; Foley et al., 2011; Mueller et al., 2012;

Iizumi et al., 2014; Ponti et al., 2014). SPAM has been used

for irrigation investment, nutrient management and climate

change studies (Nelson et al., 2008; Liu et al., 2010; You et al.,

2011). More recently, GAEZ has been used for analyses relating

Figure 3 Sum of wheat harvested area and mean wheat yield by latitude.
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to climate change, ecology and food security (Teixeira et al.,

2011, 2013; Müller & Robertson, 2014; Ponti et al., 2014).

Looking to the future, there is certainly room for the four

modelling teams to develop some community of practice.

This has started in a recent workshop convened by Interna-

tional Food Policy Research Institute (IFPRI), but more

needs to be done. Until we improve our fundamental under-

standing of where agricultural cropping systems exist, it

will remain difficult to accurately characterize global food

security.
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