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Synchronous crop failures and climate-forced
production variability
W. B. Anderson1,2,3*, R. Seager1, W. Baethgen2, M. Cane1, L. You4,5

Large-scale modes of climate variability can force widespread crop yield anomalies and are therefore often
presented as a risk to food security. We quantify how modes of climate variability contribute to crop production
variance. We find that the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), tropical Atlantic
variability (TAV), and the North Atlantic Oscillation (NAO) together account for 18, 7, and 6% of globally
aggregated maize, soybean, and wheat production variability, respectively. The lower fractions of global-scale
soybean and wheat production variability result from substantial but offsetting climate-forced production
anomalies. All climate modes are important in at least one region studied. In 1983, ENSO, the only mode ca-
pable of forcing globally synchronous crop failures, was responsible for the largest synchronous crop failure in
the modern historical record. Our results provide the basis for monitoring, and potentially predicting, simulta-
neous crop failures.
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INTRODUCTION
Rapid increases in agricultural trade have notably changed the
character of the global food production system in recent decades.
The fraction of food produced for human consumption that is traded
internationally rose from 15% in 1986 to 23% in 2009 (1). While fewer
people than ever before have inadequate access to a sufficient quantity
of food, an increasing number of people are dependent on imported
food to meet daily minimum caloric needs (2).

A stated goal of agricultural trade liberalization is to stabilize com-
modity markets by making supply more resilient without requiring
costly reserves of perishable grain (3). Poor harvests in one region
may be compensated for by bumper harvests elsewhere if produc-
tion failures are independent events, but global climate modes, such
as the El Niño Southern Oscillation (ENSO), violate this tenet by
forcing global-scale climate (4) and crop yield (5, 6) anomalies. How
important these global-scale risks are to modern-day food production
is an open question.

Despite progress in understanding average yield anomalies (7) and
the areal extent of yield anomalies (6) forced by climate modes, the
relative importance of climate modes compared to other factors, such
as weather (8) and pests (9), is poorly understood. Of particular inter-
est to global food security is the potential for global climate modes to
force globally synchronous crop failures (10), by which we mean the
failure of a single crop in multiple regions simultaneously. In the ab-
sence of substantial changes to our food production system, these fail-
ures are projected to become increasingly frequent because of climate
change (11).

Here, we quantify the relative contribution of major climate modes
to the crop production variability of individual regions and to global
production variance with particular attention to globally synchronous
crop failures. Our results provide the basis for monitoring, and poten-
tially predicting, simultaneous crop failures.
RESULTS
Climate modes
To identify how climate modes influence global crop yields, we per-
form a maximum covariance analysis (MCA) of the coupled modes of
variability between climate and crop yields (see Materials and Methods).
The first two global modes correspond to an ENSO life cycle (fig. S1);
the first (second) time expansion coefficient of the sea surface tempera-
ture (SST) mode is significantly correlated with September, October,
and November [March, April, and May (MAM)] Niño 3.4 index at
r = −0.98 (r = 0.90). Regional analyses for the North Atlantic, Indian
Ocean, and tropical Atlantic reveal climate modes that are significantly
correlated with the December, January, and February (DJF) station-
based North Atlantic Oscillation (NAO) index, July, August, and
September (JAS) Indian Ocean Dipole (IOD) mode index, April,
May, and June (AMJ) tropical South Atlantic index, and AMJ trop-
ical North Atlantic index (r = 0.89, −0.7, −0.75, and 0.81, respectively).
The patterns of climate variability resulting from a partial regression
using the climate time expansion coefficient (Figs. 1 and 2; Ak in
Eq. 2) closely resemble the patterns obtained by creating positive
minus negative phase composites for each variable (not shown),
which confirms that the modes that we identify capture relevant large-
scale climate teleconnections. To discuss the causal pathway between
each climate mode and its crop yield teleconnections, we adopt a
region-by-region approach.

Regional analyses
Crop yields in Northeast Brazil, southwest Mexico, and West Africa
are influenced by climate modes centered in the Pacific Ocean (Fig. 1
and fig. S1) and Atlantic Ocean (Fig. 2 and fig. S2) basins that affect
growing season (boreal spring to fall) moisture availability. In North-
east Brazil, southwest Mexico, and West Africa, ENSO accounts for
38, 20, and 15% of local maize production variance (see Eq. 4 in
Materials and Methods), while internal variability of Atlantic SSTs ac-
count for 28 and 26% of the variance in Northeast Brazil and West
Africa (Fig. 3). During the summer of a developing El Niño, the in-
tertropical convergence zone (ITCZ) remains closer to the equator in
the Eastern Pacific, which decreases the moisture convergence south
of Mexico (Fig. 1) and inhibits southerly moisture surges that bring
rain to south-central Mexico (12), leading to poor maize harvests
(13). The opposite is true during a developing La Niña. A mature
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El Niño warms and stabilizes the troposphere throughout the tropics
(Fig. 1) (4), which inhibits convection and thus favors drought in West
Africa and Northeast Brazil (4, 14). Furthermore, a mature El Niño
warms SSTs in the north tropical Atlantic Ocean, which leads to a
northward displacement of the ITCZ such that precipitation in
Northeast Brazil is further inhibited (14). Internally generated trop-
ical Atlantic variability (TAV) can enhance (or dampen) the positive
meridional SST gradient, which amplifies growing season precipitation
anomalies in northern Northeast Brazil (14) and West Africa (Fig. 2).

In southeast South America and the United States, climate varia-
bility explains 10 to 23% of crop production variability. Both regions
are affected by Rossby wave trains forced by heating in the tropical
Pacific (Fig. 1). During austral summer, a mature El Niño forces an
anticyclonic (cyclonic) circulation anomaly to the east (west) of south-
east South America that advects moisture into the region (15), which
leads to above-median precipitation (15) and above-normal yields of
maize and soybeans (fig. S1) (16). Forwheat in southeast SouthAmerica,
however, additional precipitation during El Niños leads to an increased
probability of disease and increased cloudiness that decreases insola-
tion (17), both of which lower yields. In the Northern Hemisphere, a
mature El Niño (LaNiña) excites a Rossby wave response (4) that leads
to increased (decreased) wintertime precipitation in the southern
Anderson et al., Sci. Adv. 2019;5 : eaaw1976 3 July 2019
United States, which persists through the following spring as soil mois-
ture anomalies (Fig. 1) to positively (negatively) influence wheat yields
(fig. S1) in the southern Great Plains (18, 19). A developing El Niño
(La Niña) affects maize (20) and soybean yields by forcing a trough
(ridge) over theMidwest that leads to decreased (increased) heat and
drought (18), although the dynamics are not well understood.

Australian and East African crop yields are affected by both the
IOD and ENSO (Figs. 1 and 2 and figs. S1 and S2). Together, the
two modes contribute to 30 to 41% of wheat production variability
(Fig. 3). During the Ethiopian Kiremt (JAS) growing season, devel-
oping El Niños stabilize the tropical troposphere, which reduces pre-
cipitation over Ethiopia (Fig. 1) (21), causing crop failures. The El
Niño of 2015/2016 is a compelling example (22). Six months later,
during austral summer, however, El Niños warm Indian Ocean SSTs
and force a precipitation dipole in Eastern Africa such that South-
eastern Africa is drier than normal but the Horn of Africa “short
rains” season is wetter than normal (Fig. 1). Amature El Niño warms
SSTs and leads to increased convective heating in the western Indian
Ocean, which forces a low-level cyclonic circulation off the southeast
coast of Africa and decreases moisture flux convergence into South-
eastern Africa (23), leading to drier than normal conditions and crop
failures (22). In southeast Australia, La Niñas and negative IOD states
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Fig. 1. El Niño climate teleconnections in JAS (July, August, September), NDJ (November, December, January), and MAM (March, April, May). Partial regression
coefficients for the standardized ENSO time expansion coefficients 1 + 2 (A1 * sA1

+ A2 * sA2
in Eq. 2) from the multilinear regression analysis. Partial regression

coefficients are shown for three stages in the life cycle of an El Niño event: a developing El Niño (A), a mature El Niño (B), and a decaying El Niño (C). Colors are sea
surface temperature anomalies (in °C) of the ocean and soil moisture anomalies (in kg/m2) over land; contours are 200-hPa geopotential height anomalies (con-
tours every 5 hPa), and vectors are winds at 925 hPa.
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lead to increased precipitation (Figs. 1 and 2) (24) and positive winter
wheat yields (fig. S2) (25), while El Niños and positive IOD states favor
droughts and poor wheat yields (24, 25) by forcing an anticyclonic cir-
culation and descent that extends over much of Australia (Fig. 2).

In China and India, ENSO accounts for 26 and 25% of maize
production variability but has a much smaller influence on wheat
production because of extensive irrigation of wheat (26). Crops
grown in India are divided into Kharif crops (e.g., maize) grown during
the summer monsoon from June to September and Rabi crops (e.g.,
winter wheat) planted after the summer monsoon. During an El Niño,
decreased summermonsoon precipitation (Fig. 1) damages Kharif crop
yields (fig. S1) and leads to depleted soilmoisture during the earlyweeks
of the Rabi season, which depresses yields in the following harvest (27).
In theNorthChina Plain, a developing LaNiña (ElNiño) leads to above
(below) expectedmaize yields (fig. S1) (28). One hypothesis for this tele-
connection is that increased convection in the western North Pacific
during a developing El Niño shifts the subtropical high southward
and weakens it during midsummer, bringing precipitation to the
Yangtze River valley but drought further to the north (Fig. 1) (29).

In both Europe (30) and North Africa (31), the NAO has a strong
influence on wintertime climate. Climate variability accounts for
∼14% of winter wheat production variance in Europe but ∼64% in
North Africa (Fig. 3). The disparate strength of influence between
North Africa and Europe is likely related to the forms of abiotic stress
imposed by theNAO in each region. InNorthAfrica and Spain, wheat
is primarily moisture limited and the NAO affects wheat yields by
altering moisture availability, while in central Europe and Scandinavia,
Anderson et al., Sci. Adv. 2019;5 : eaaw1976 3 July 2019
the temperature teleconnection is stronger (32). A positive NAO leads
to reduced precipitation (31) and soil moisture in North Africa (Fig. 2),
which leads to poor wheat yields (fig. S2). In parts of Scandinavia, the
Balkans, and central Europe, positive NAOs produce relatively mild
winters (Fig. 2) that reduce frost kill risks to winter wheat and lead to
above expected yields (fig. S2). In Europe, both ENSO and the NAO
affect winter wheat yields (Fig. 3), but ENSO does so by forcing
NAO-like atmospheric states in the North Atlantic (33).

Global analysis
When considering all growing regions, climate modes account for 23,
17, and 15% of local maize, wheat, and soybean production variability
(Fig. 4, A, C, and E; see Eq. 4 inMaterials andMethods). According to
past estimates (8), climate-related stresses (i.e., both weather- and cli-
mate mode–related) account for 32 to 39% of global wheat, soybean,
and maize yield variability. Climate modes and weather, therefore,
contribute roughly equally (∼15 to 20%) to the overall climate-related
crop yield variance.

In Fig. 4 (B, D, and F), we separate the production statistics into
quartiles of production intensity to demonstrate that the total local
variance in Fig. 4 (A, C, and E) largely reflects the variance in high-
production regions. However, climate modes have a substantial ef-
fect on production variance in low-production regions as well, and
teleconnections to maize remain comparable to or stronger than
teleconnections to wheat and soybean in all quartiles. The influ-
ence of the NAO on wheat production variance at the global scale,
however, reflects its influence in high-production systems, while
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Fig. 2. Climate teleconnections for the Indian Ocean Dipole (IOD), Tropical Atlantic Variability (TAV), and North Atlantic Oscillation (NAO). Partial regression
coefficients for the standardized IOD, TAV, or NAO time expansion coefficients (Ak * sAk

in Eq. 2) on dependent climate variables. IOD coefficients during JAS (A) and NDJ
(C). The NAO coefficients for DJF (B) and TAV coefficients during May, June, and July (D). Colors are SST anomalies of the ocean (in °C) and soil moisture anomalies over
land (in kg/m2). Contours are 200-hPa geopotential height anomalies (contours every 5 hPa for TAV and IOD and every 15 hPa for NAO), and vectors are winds at 925 hPa.
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the TAV’s influence on maize variance at a global scale is muted be-
cause it primarily affects low-production regions. ENSO consistently
contributes to the variance of both high- and low-production systems
for all crops.

The tendency for maize to be more strongly affected by climate
modes than wheat or soybeans holds true at both the regional (Fig. 3)
and global (Fig. 4) scale. The heavy irrigation of wheat in China and
India (34) explains the muted effect of climate modes on wheat. How-
ever, neither soybeans nor maize tends to be irrigated (34), and even in
areas where they are cultivated during similar seasons, maize is more
strongly affected by climate modes (Fig. 3). The discrepancy between
maize and soybeans may be due to the relatively higher water demand
of maize and soybeans are an indeterminate crop, one having a
distribution of flowering dates rather than a single flowering date. Both
of these characteristicsmake soybeans less sensitive thanmaize to a pre-
cipitation deficit during the growing season.

Climatemodes account for 18%of variability of globalmaize produc-
tion but only 7 and 6% of variability of global soybean and wheat pro-
duction (Fig. 4, A, C, and E). The difference between the globally
aggregated and local variance indicates that positive and negative climate
teleconnections to maize yields are only minimally offsetting, while tele-
connections to wheat and soybean yields are substantially offsetting.
Anderson et al., Sci. Adv. 2019;5 : eaaw1976 3 July 2019
The degree to which a climate mode forces offsetting crop yield
anomalies depends on how the spatial distribution and intensity of
climate teleconnections intersect the distribution and intensity of crop
production. The compensating yield anomalies produced by the NAO
are straightforward because they occur in a single region and season: A
dipole in climate teleconnections (Fig. 2) leads to a dipole in yield
anomalies (fig. S2) that substantially offsets one another. The degree
to which ENSO leads to offsetting yield anomalies in a calendar year,
however, is determined by howmultiyear life cycles of ENSO telecon-
nections affect local crop growing seasons. Past research has demon-
strated how life cycles of ENSO teleconnections can lead to offsetting
growing conditions in major wheat, maize, and soybean producing
regions (34), but these analyses do not describe the extent to which
compensating environmental conditions translate into offsetting pro-
duction anomalies. In the following section, we discuss ENSO telecon-
nections in terms of crop production anomalies and the degree towhich
they do or do not offset one another to dampen global-scale production
variability.

Offsetting ENSO teleconnections
ENSOevents develop in boreal summer, peak in thewinter, and decay the
following spring, so any given calendar year will be either a developing,
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Fig. 3. Local production variance associated with climate modes. Harvested area of wheat, maize, and soybean with numbered boxes indicating regions for the
variance analysis (A). Percent of national or subnational scale variance in each region for wheat (B), soybean (C), and maize (D) explained by the ENSO (El Nino Southern
Oscillation), IOD, TAV, or NAO. The percent values on top of each bar indicate the total variance explained by modes of climate variability (ENSO + TAV + IOD + NAO).
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decaying, or transitioning (e.g., El Niño to La Niña) ENSO event. For
soybeans, ENSO forces moderate production anomalies in the United
States during a developing year and in southeast South America during
a decaying year, but these anomalies offset one another in a transition
year (table S1 and fig. S1). For wheat, a developing ENSO event forces
production anomalies in Eurasia that are partially offset by anomalies
in the United States, while a decaying event produces same-sign
anomalies in Australia and southeast South America. In a transitioning
year, the wheat production anomalies offset one another (table S1). For
maize, large production anomalies in the United States during a devel-
oping year are only partially offset by anomalies in India and China.
During a decaying year, maize production anomalies in southeast
South America are offset by those in Southeast Africa, West Africa,
and Brazil.

Provided that soybean cultivation is more concentrated than that
of maize, it may seem counterintuitive that ENSO teleconnections to
soybeans are offsetting while teleconnections to maize are not, but this
serves to highlight the importance of understanding how climate tele-
connections intersect the distribution of cultivated lands. Soybean
production is dominated by two regions: the United States (32% of
Anderson et al., Sci. Adv. 2019;5 : eaaw1976 3 July 2019
production in 2010) and southeast South America (46% of produc-
tion). During a transitioning ENSO year, ENSO-forced production
anomalies in these regions effectively offset one another (table S1).
ENSO teleconnections to maize yields are of the same sign as tele-
connections to soybean yields (fig. S1), but the production anomalies
are less effective at offsetting one another because of the relative
distribution of maize production to the United States (31% of produc-
tion) and southeast South America (8% of production). Maize produc-
tion would be stabilized during ENSO years if production in the United
States decreased and production in southeast South America, East Asia,
and Southeast Asia increased. These changes would similarly decrease
global production variance in non-ENSO years by moving maize pro-
duction out of high-variance regions while maintaining global expected
yields (35).
DISCUSSION
The global maize failures in 1983 were the most pronounced synchro-
nous crop failure event in modern record (10). The 1983 El Niño was
also one of the three strongest El Niños in at least the past 150 years. In
Fig. 5, we plot the ENSO-forced yield anomalies as derived from our
MCA analysis alongside the observed yield anomalies from 1983 to
illustrate how large the influence of ENSO was on the synchronous
crop failures of that year. The crop yield anomalies in 1983 are
characteristic of an El Niño transitioning during the calendar year into
a La Niña (compare Fig. 5 to fig. S1). The largest maize production
failures occurred in southeast South Africa during the El Niño–forced
drought in austral summer and in the United States during the
following hot and dry boreal summer during La Niña. The observed
and ENSO-forced patterns are notably similar, although the differing
magnitudes of U.S. yield anomalies indicates that either nonlinear
ENSO teleconnections or other factors were also at play. While
1983 is a case study, it is illustrative of the role that ENSO plays in
forcing the most extreme synchronous maize failures.

Climate modes are, of course, only one of the many factors that
affect crop yield variability. Crop yields are also affected by weather,
pests, disease, and management decisions. While the relative impor-
tance of each factor will depend on the region in question, our results
demonstrate that climate modes substantially affect crop yield varia-
bility on both regional and global scales.

ENSO, the IOD, TAV, and NAO are all important in at least
one region studied, but only ENSO has a substantial influence on
global production. Owing to the global scale of its influence and
the distribution of maize production, ENSO has the potential to
force globally synchronous maize failures, as it did in 1983. His-
torically, ENSO has not forced synchronous crop failures of wheat
and soybean because of the distribution of cropland across regions
with offsetting teleconnections or in regions that are weakly tele-
connected, although this balance does not preclude large regional
influences.

The trend toward a more interconnected global food system
makes understanding the drivers of global-scale disruptions to food
production necessary. Access to food and household welfare can be
directly affected because of local crop failures, but it can also be
indirectly affected by international trade, markets, and food prices
(36). Our results indicate that climate modes can produce global-
scale production anomalies, but further research is needed on how
(and whether) these events translate to notable price shocks or ex-
port restrictions.
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Fig. 4. Production variance associated with climate modes at the global
scale and disaggregated by production quartile. Percent variance explained
by each climate mode in the global domain when production variance is
measured at the national or subnational scale (“local”) or measured in the globally
aggregated time series (“global”) for maize (A), soybean (C), and wheat (E). See
Materials and Methods for details. Percent of local variance explained disaggre-
gated by average absolute production (in kg) quartile for maize (B), soybean (D),
and wheat (F). Results ordered from lowest-production quartile (q1) to highest-
production quartile (q4). Colors refer to variance related to the ENSO, IOD, TAV,
or NAO.
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A Observed 1983 percent yield anomalies

C 1983 maize production anomalies (kg)

B ENSO-related 1983 percent yield anomalies

Fig. 5. Observed and ENSO-forced yield anomalies during the largest synchronous crop failure in modern historical record. Observed (A) and ENSO-forced
(B) percent crop yield anomalies in 1983, which has been identified (10) as the most extensive synchronous crop failure in modern (after 1960) record, and maize pro-
duction anomalies (C) by country. Both the spatial pattern and globally aggregated values indicate that ENSO played a major role in forcing synchronous crop failures in
1983. Observed crop yield anomalies are characteristic of an El Niño transitioning to a La Niña, as was the case in 1983 (compare to maize yield anomalies in fig. S1).
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Table 1. Source of national and subnational crops statistics used in the analysis.
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Country
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Crop
i. Adv. 2019;5 : eaaw1976
Agency
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Website
United States
 Maize, wheat, and
soybean
 U.S. Department of Agriculture
 http://quickstats.nass.usda.gov/
Argentina
 Maize, wheat, and
soybean
Integrated Agricultural
Information System
 www.siia.gov.ar/
Brazil
 Maize, wheat, and
soybean
Brazilian Companhia Nacional de
Abastecimento
 www.conab.gov.br/index.php
Canada
 Wheat
 Statistics Canada,
CANSIM database
https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?
pid=3210035901#timeframe
India
 Maize and wheat
 Directorate of Economics and Statistics
 https://eands.dacnet.nic.in/
Mexico
 Maize
 INEGI Information Databank
 See Other Supplementary Materials (advances.sciencemag.org/cgi/
content/full/5/7/eaaw1976/DC1): maize_yield_anoms.csv
China
 Maize, wheat, and
soybean
 Ministry of Agriculture
 http://zzys.agri.gov.cn/nongqing.aspx
Australia
 Wheat
 Australian Bureau of Statistics
 www.abs.gov.au/
Other
countries
Maize, wheat, and
soybean
 FAO
 www.fao.org/faostat/en/
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Recognizing the difference between random and structured
risks to global agriculture creates an opportunity to plan for future
global-scale disruptions to food production. Distinguishing ENSO-
from weather-related droughts may seem semantic from the per-
spective of the maize plant, which fails in either case, but doing so
is relevant to a country in West Africa that imports maize from South-
east Africa because both tend to experience drought and maize failures
during an El Niño.

Our analysis provides the first global estimate of the degree to
whichmodes of climate are responsible for crop production variability
at regional and global scales. Independent of climate or crop models,
our findings are an observationally derived estimate of the influence of
climate modes on crop production variability.
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MATERIALS AND METHODS
Subnational crop statistics from 1980 to 2010 were downloaded for
crops in the United States, Argentina, Brazil, Canada, Mexico, India,
China, and Australia (see Table 1). Food and Agriculture Organiza-
tion (FAO) data were used where subnational data were unavailable.
We used harvest year for all crops. We masked cropped areas on the
basis of cells that have at least 0.01% harvested area for each crop (37).

For the climate analyses, we used SST anomalies from Extended
Reconstructed SST v3b (38) and geopotential height and wind speed
anomalies from the National Centers for Environmental Prediction–
National Center for Atmospheric Research Reanalysis I (39).We stan-
dardized the SST field by multiplying each value by the square root of
latitude and dividing by the standard deviation of the whole field.Over
land, we used 0- to 1-m soil moisture from the Noah land surface
model version 3.3 in the Global Land Data Assimilation System
version 2 (40).

We calculated percent crop yield anomalies by first removing
the long-term trend (the “expected yield”) in each subnational unit
using a low-frequency Gaussian filter with a kernel density of 3 years,
which is similar to a 9-year running mean. Absolute yield anomalies
were calculated as deviations from this long-term yield trend, which
accounts for changes in management and technology at the sub-
national level. The absolute yield anomalies were divided by expected
yield in each year to give the percent yield anomaly. Production
anomalies, where used, were calculated as the product of the observed
harvested area in each year and the absolute yield anomalies.

To isolate the influence of climate variability on crop yields, we
used MCA (41). MCA uses a singular value decomposition (SVD)
of the cross-covariance matrix between two fields—in this case, cli-
mate (SST or geopotential height) and percent crop yield anomalies
(wheat,maize, and soy)—to identify the primarymodes of covariance.
By using MCA and focusing on covariance at a global scale, we at-
tempted to separate yield anomalies forced by modes of climate var-
iability from those forced by other factors. We expect that usingMCA
will separate localized weather-, pest-, or management-related crop
failures from those that covary with climate modes. One benefit of
using MCA to identify coupled modes of climate and crop yield co-
variance is that although it requires a choice of variables, there is no
need to a priori choose a set of indices (of which there are many) to
measure the activity of different climate modes.

To perform the MCA on SSTs and crop yield anomalies, we first
construct the standardizedN ×M SST anomaly matrix, S, whereN are
all the observations from a calendar year (N = 12months × number of
locations) and M is the number of years. We similarly construct the
Anderson et al., Sci. Adv. 2019;5 : eaaw1976 3 July 2019
standardized crop yield anomaly matrix, Y, by concatenating the
wheat, maize, and soybean yield anomalies from a calendar year
together to make a K × M matrix with K being observations for all
crops in all countries andM being the number of years. The exception
to this is the NAO, for which we restrict the influence of the winter
NAO to a single crop, winter wheat. We then calculate the SVD of the
cross-covariance matrix as

SYT ¼ USVT ð1Þ

where SYT is the cross-covariance matrix. The orthonormal matrices
U and V then contain the spatial SVD modes corresponding to the
data fields S and Y, respectively, and S is a matrix with the singular
values on the diagonal. The leading modes represent the primary
patterns of covariance between the two fields. We next recover the
time-expansion coefficients for each mode, k, as

Ak ¼ UT
k S;Bk ¼ VT

k Y ð2Þ

such that we can reconstruct the portion of the total variance in the
data related to each SVD mode as

Sk ¼ AkUk;Yk ¼ BkVk ð3Þ

TheMCA analysis provides a series of spatial patterns (U andV) of
climate and the associated crop yield anomalies forced by teleconnec-
tions from that climatemode. For example, when S is a matrix of trop-
ical Pacific SSTs and Y contains crop yield anomalies of maize, soy,
and wheat, the leadingmode inU is a matrix of the monthly evolution
of SST anomalies during an ENSO life cycle at each location in the
tropics. The corresponding leading mode in V contains the covarying
crop yield anomalies at each location, which are forced by teleconnec-
tions from ENSO. The time expansion coefficients for U and V repre-
sent how strongly each mode loads on each year and, in this example,
would be closely related to indices measuring ENSO activity.

Agriculturally relevant teleconnections frommost modes of varia-
bility occur primarily in a single season: The NAO in boreal winter
affects precipitation in North Africa (31) and spring moisture availa-
bility in Europe (30); the TAV in spring affects rainy season precipi-
tation in the Atlantic basin (14), and the IOD in late boreal summer
affects Australian rainfall (42). For eachmode of variability, therefore,
we chose a domain that corresponds to the climate teleconnections
from that mode during relevant growing seasons. ENSO, however,
has global teleconnections that span the calendar year. For ENSO,
therefore, we use global SSTs from 20°N to 20°S and global crop yields
in the MCA analysis. After removing the influence of ENSO from the
crop yield and SST fields by subtracting the ENSO-forced reconstruc-
tion (see Eq. 3), we repeated the MCA analysis for TAV and the IOD
using the tropical Atlantic (20°N to 20°S, 60°W to 20°E) and Indian
(20°N to 20°S, 35°W to 140°E) oceans with crop yields from countries
in each basin (those shaded in Fig. 3). For the NAO, we used 500-hPa
geopotential height anomalies in the domain 20°N to 80°N, 90°W to
40°E in conjunction with crop yields from Europe, the former Soviet
Union, and the Mediterranean basin. For eachmode of variability, we
used climate variables from the season in which the mode was active:
For ENSO, we used all months (January to December); for the IOD,
we used July to September; for TAV, we used April to July; and for the
7 of 9

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 3, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

NAO, we used December to February. For each analysis, we used the
first leading mode, or if the first two modes were not well separated
fromone another on the basis of their eigenvalues, we used the leading
two modes. We explored whether leading modes of the MCA analysis
related to othermodes of climate variability, such as the Southern An-
nular Mode, the Scandinavian pattern, the East Atlantic index, or the
Western Pacific index as well. The absence of leading modes that cor-
respond to these indices in our analysis does not necessarily demon-
strate that they are unimportant for crop yields but rather that any
influence they may have is not separable, given the spatial resolution
and length of available crop yield statistics.

We conducted a number of sensitivity analyses on the domains used
for climate variables and the crop yield anomalies for the NAO, TAV,
and IOD and found the results to be robust. We also tested an “ENSO-
year” (May to April) for SST, which changes the partitioning of SST
variance between modes 1 and 2 of the SVD but does not change the
sum of the two modes or any of the results presented here.

After identifying the major coupled modes of variability, we con-
firmed that each mode corresponds to a known mode of climate var-
iability using a series of linear multiple regression analyses, event
composites, and correlations. In the linear multiple regression analy-
sis, we computed regression coefficients between the time expansion
coefficients as independent variables and either soil moisture, SST,
geopotential height, or vector wind anomalies as the dependent vari-
able. We then compared the results of the regression analysis with a
series of positive minus negative event composites. For ENSO, for
example, we compared the spatial pattern of regression coefficients
obtained from the multiple regression analysis to an El Niño minus
La Niña composite for the same climate variables. Last, we also com-
pared the correlation between the time expansion coefficient of each
mode and the corresponding climate index.

We calculated two types of production variance in this study: local
variance and global variance. The local production variance measures
the cumulative variance of all statistical reporting locations (i.e., states,
provinces, countries, etc.) in a given domain. The global production
variance measures the variance of a single global production anomaly
time series and, by comparison to the local variance, provides a sense
of whether the local production anomalies are additive (of the same
sign) or offsetting (of opposite signs)when aggregated to a global scale.
We calculate the local production variance as the sum of the squared
vector norm of the absolute production anomaly time series

‖A‖2 ¼ Si;j∣ai;j∣2 ð4Þ

where A is a matrix that contains absolute production anomaly values
ai, j for each location j and year i in a given domain. The global pro-
duction variance is computed similarly, except that the vector norm is
computed after summing the production values from all j locations
into a time series of global production anomalies.

Our analysis relies on subnational and FAO country-level crop
statistics, and while there are known issues with both (43, 44), our
methods minimize the degree to which poor data quality affects the
results presented. Random errors in the crop yield data include those
introduced by a reduced capacity of the FAO to accurately collect
country-level data in Africa (43), while systematic errors include the
over-reporting of achievements in Chinese statistics (44). Because both
random and systematic errors are independent with respect to modes
of climate variability, the MCA analysis is one means of separating the
Anderson et al., Sci. Adv. 2019;5 : eaaw1976 3 July 2019
forced signal from this added noise or added bias. We do expect, how-
ever, that errors in the data degrade the strength of the relation be-
tween climate modes and crop yield anomalies in our analysis.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaaw1976/DC1
Fig. S1. SST and crop yield anomalies during a year transitioning from El Niño to La Niña.
Fig. S2. SST, geopotential height, and crop yield anomalies associated with the NAO,
TAV, and IOD.
Table S1. Crop production anomalies during a year transitioning from El Niño to La Niña.
Crop yield anomalies and long-term yield trends for each statistical reporting unit from
1980 to 2010.
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