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1 Introduction

Here we’ll introduce the concept of scaling, which is a formal way to estimate
the magnitude of terms in an equation. Scaling is essentially a rule of thumb to
decide which terms are dominant and which are negligible.

1.1 Notation

In what follows I’ll assume an Eulerian frame of reference. First a quick bit of
notation that I’ll use throughout.

Vectors will be defined using bold text:

x = (x,y,z)

Similarly for vectors of velocities:

U = (u,v,w) =
dx

dt

And the horizontal component of a velocity vector: :

u = (u,v)
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Material derivatives:
Dc

Dt
=
∂c

∂t
+ U · ∇c

When we want only the horizontal gradient, we will use ∇z

1.2 Definition of terms

As in our notes on the primitive equations, we’ll keep track of the definitions of
variables in this section for reference later.

Φ = gz (geopotential height)

b = −g ρ
′

ρ0
= −g T

′

T0
(buoyancy)

φ =
p′

ρ
(dynamic pressure)

f ≈ f0 + (βy) = f0 +

(
∂f

∂y

)
y = f0 +

(
2Ωcosθ0

a

)
y (Coriolis parameter)

2 Scale analysis

2.1 Hydrostatic balance

In what follows we will replace exact variables instead with estimates of their
magnitude. We will start with the vertical component of the fully expanded
equation for motion in a beta-plane prior to excluding any terms:

∂w

∂t
+ u

dw

dx
+ v

dw

dy
+

1

2

dw2

dz
− 2(Ωyu) = −1

ρ

∂p

∂z
− g

which, in a scale analysis becomes:

W

T
+ 2U

W

L
+

1

2

W 2

H
− 2(ΩU) ∼ −1

ρ

∂p

∂z
− g

but because we care only about the magnitude of the terms

W

T
+
UW

L
+
W 2

H
− ΩU ∼ −1

ρ

∂p

∂z
− g

where W is the scale term for vertical velocity, U is the scale term for horizontal
velocity, H is the scale term for height, L is the scale term for length and T is
the scale term for time. Note that here we have not scaled the right hand side.
Generally all of the terms on the left hand side are sufficiently small such that
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the right hand side dominates. To see this plug in magnitudes for each term
yourself. Se the below table for typical horizontal values, and W and H are an
order of magnitude smaller than their horizontal counterparts (CHECK THIS).

Figure 1: Table 2.1 from Vallis (2006)

If the right hand side dominates, then we are left only with the hydrostatic
balance!

−∂p
∂z

= ρg

2.2 Geostrophic balance

Having conducted a scale analysis on the vertical component of the momentum
equation, we will now move to the horizontal components. We will find that
the dominant terms in the horizontal direction are the pressure gradient terms
and the Coriolis parameter. This balance is known as geostrophic balance. In
order for geostrophic balance to hold, the Rossby number – which is a ratio
of the magnitude of the advective and Coriolis terms – must be small. We
can see where the Rossby number comes from by starting with the horizontal
components of the momentum equation.

∂u

∂t
+ (U · ∇)u + f× u = −1

ρ
∇zp

U

T
+
U2

L
+ fU ∼ −1

ρ
∇zp

Now we take the ratio of the relative and Coriolis accelerations to define the
Rossby number

R0 ≡
U2

L

fU
=

U

fL

If the Rossby number is small, then the (Coriolis) rotation term will dominate
the (nonlinear) advective term, and we will be left with only

f× u ≈ −1

ρ
∇zp

3



which is the geostrophic balance! In cartesian coordinates:

fu ≈ −1

ρ

∂p

∂y
(1)

fv ≈ 1

ρ

∂p

∂x
(2)

Notice that there is no vertical component of the geostrophic flow, which means
that geostrophic flow is parallel to lines of constant pressure. In the northern
hemisphere (where f is positive), geostrophic flow is anticlockwise around low
pressure and clockwise around high pressure (see below).

Figure 2: Figure 2.5 from Vallis (2006)

We will also note that if the density and the Coriolis force are constant in
the horizontal, then the geostrophic flow is non-divergent (∇z · ug = 0)

2.2.1 Taylor-Proudman effect

2.3 Thermal wind

We may gain further insight by combining the geostrophic and hydrostatic ap-
proximations. This will be most straightforward in pressure coordinates. The
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hydrostatic balance is
∂Φ

∂p
= −1

ρ

and if we substitute the ideal gas law (ρ = p/RT ) into the hydrostatic balance

∂Φ

∂p
= −RT

p

In pressure coordinates the geostrophic balance is

f× ug = −∇pΦ

where ∇p is the gradient operator applied on surfaces of constant pressure. If
we differentiate the geostrphic balance with respect to pressure, we get:

f× ∂ug

∂p
= −∇p

∂Φ

∂p

and substituting the hydrostatic balance into the right hand side:

f× ∂ug

∂p
= −∇p

(
− RT

p

)
=
R

p
∇pT

Which is the thermal wind balance! In component form, it is

−f ∂vg
∂p

=
R

p

∂T

∂x
(3)

f
∂ug
∂p

=
R

p

∂T

∂y
(4)

These equations imply that changes in the geostrophic velocity with height
are related to horizontal changes in temperature. In other words, a negative
equator-to-pole temperature gradient may be responsible for strengthening the
geostrophic wind with height. Note that these equations are in terms of pressure.
Switching to z coordinates would change the sign of the left hand side since
pressure increases downward.

2.4 Zonal winds

We can predict a great deal about the zonal flow using only the thermal wind
balance and the observed equator-to-pole temperature gradients that we dis-
cussed in the previous section. Remember that the thermal wind balance is

f
∂u

∂p
=
R

p

∂T

∂y

which relates the vertical wind shear to meridional gradients in temperature. To
get a full picture of the zonal wind, however, we should make a few additional
notes about the structure of meridional temperature gradients throughout the
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atmosphere. In the troposphere, temperature falls monotonically with latitude.
This gradient is larger in the winter hemisphere than the summer because peak
insolation is shifted towards the summer hemisphere, so the winter pole receives
virtually no direct sunlight. Above the troposphere (starting somewhere be-
tween 8 and 16 km above the sea level) is the stratosphere, where temperature
increases with height. In the stratosphere the meridional temperature gradient
is reversed (or, for the upper stratosphere, monotonic from pole-to-pole).

Figure 3: Stratospheric and tropospheric zonal temperature profile during
northern hemisphere winter (taken in February).
Credit: National Weather Service, Climate Prediction Center website
www.cpc.ncep.noaa.gov/products/stratosphere/theta/theta info.shtml

By mentally applying the thermal wind relation to the above figure and
comparing it to observations of zonal wind in the below figure, we can see the
qualitative resemblance (note that the zonal wind figure reaches only 30 km
while the temperature figure reaches 45 km). In the troposphere, meridional
temperature gradients are largest at the edge of the subtropics, which leads
to zonal jets, with the winter hemisphere jet being stronger than the summer
hemisphere jet. The zonal winds also follow expectations in the stratosphere.

At the surface, winds alternate from easterly near the equator to westerly
in the midlatitudes and finally easterly again at high latitudes. Surface winds
are stronger in the southern hemisphere due to a lack of drag from continental
land masses. And while only one season is shown here, surface winds within a
given hemisphere are stronger in the winter as compared to the summer season
(corresponding to the stronger jet aloft).
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Figure 4: Top panel: zonally averaged zonal wind, bottom panel: zonally aver-
aged zonal winds at the surface
Credit: Vallis (2006)

A significant result of these observations is that there is no need to invoke
a convergence of momentum to drive these jets. They may result from the
temperature gradient and thermal wind alone. However, just as the observed
meridional temperature gradient is smaller than predicted by radiative convec-
tive equilibrium, by extension the zonal wind shear is also smaller than what
would be predicted by radiative convective equilibrium. The net impact of large
scale circulations, particularly turbulent motions in the mid-latitudes, is to re-
duce the amplitude of temperature and zonal wind shear via poleward energy
transport.
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