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1 Introduction

In this set of notes we’ll cover a brief overview of atmospheric waves, specifically
the generation and propagation of Rossby waves and why the mean climate
has stationary waves.

2 Properties of waves

When describing waves in the ocean or the atmosphere we make a number of
simplifications, often representing waves a an idealized sine wave (or Fourier
Series of sine waves). By doing so we are making use of the approximation that
for waves of sufficiently small amplitude the period is independent of amplitude.

For any given wave, we therefore describe it in terms of its wave number,
frequency and phase speed, which describes the number of complete oscilla-
tions a wave makes around a circle. When we use the concept with reference
to a latitude circle, we define its zonal wavenumber as k = 2πs/L where s is
the planetary wave number (i.e. the number of waves around a latitude) and
L is the circumference around that latitude. The frequency of the oscillation
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is often expressed using the symbol ω. The phase speed describes the rate and
direction in which the wave propagates and is defined as c = ω/k

Waves in the atmosphere and ocean exist in groups of sine waves rather than
as a single oscillation, so we can also describe properties of groups of waves. We
primarily describe groups of waves as dispersive or non-dispersive. If a wave
is non-dispersive, its phase speed is independent of its wave number. In other
words, all of the sinusoidal components of the signal will propagate at the same
rate (and in the same direction), and the signal shape will be unchanged as it
moves through a medium. If a wave is dispersive then the phase speed does
depend on wave number, so that as the waves propagate they will change shape
and spread out. We also describe group velocity, which is the way in which
the amplitude of waves travel (i.e. the visible disturbance). The group velocity,
by definition, is also a description of how the energy of the waves travel. Figure
1 (defined as cg = ∂ω/∂k) describes how two sinusoidal components of a wave
can be dispersive or non dispersive and how a dispersive wave propagates with
different phase speeds and group speeds.

Figure 1: Figure credit: Holton and Hakim (2012)

So as a quick review, below is a list of terms and formulas used to describe
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waves:

k =
2πs

L
= wave number

ω = frequency

c =
ω

k
= phase speed

cg =
∂ω

∂k
= group velocity

Because waves are described as a series of sine waves, we can also describe
them using a Fourier Series in which each component is modeled as:

f(x) = Re[Cscos(kx) + iCssin(kx) = eikx]

where Cs is a complex coefficient and k is the wavenumber

3 Types of waves

In this section we’ll describe a few of the common types of waves (Rossby, Kelvin
and gravity), as well as their propagation and dispersion. Each of these waves
have their own restoring force.

3.1 Kelvin waves

A Kelvin wave is a type of low-frequency gravity wave that balances the Coriolis
force against a topographic boundary, such as a coastline, or against a waveg-
uide, such as the equator. Because the Coriolis force balances with the pressure
gradient force of water built up against a shoreline, Kelvin waves propagate
with the coast to the right in the Northern Hemisphere, or to the left in the
Southern Hemisphere. When the wave runs into the coast, the zonal pressure
gradient forces meridional velocity, driving the Kelvin wave (see Figure 2)

3



Figure 2:

Figure source: www.geo.cornell.edu/ocean/p_ocean/ppt_notes/21_KelvinRossbyWaves.pdf

The distance off shore (L) at which the Kelvin wave amplitude becomes
negligible is the Rossby radius of deformation. It depends on whether the Kelvin
wave is at the surface or in the thermocline. On the ocean surface, the Rossby
radius of deformation is about 200 km in the mid-lattitudes but is only about
25 km for mid-latitude thermocline Kelvin waves.

Kelvin waves can also propagate along the equator, using the fact that the
Coriolis force changes sign as the restoring force. So equatorial Kelvin waves
balance the Coriolis force from the NH (acting to the right) against its counter
part in the SH (acting to the left) as the wave travels east. The Coriolis forces
would be divergent if the wave were to travel west, which is why equatorial
Kelvin waves only travel east. Figure 3 demonstrates how off-equatorial Rossby
waves propagate westward (discussed in the next section) while equatorially
trapped Kelvin waves propagate eastward until they reach the eastern boundary,
at which point they become coastal Kelvin waves.
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Figure 3:

Figure source: www.geo.cornell.edu/ocean/p_ocean/ppt_notes/21_KelvinRossbyWaves.pdf

3.2 Rossby waves

Rossby waves are not bound to wave guides and instead conserve potential
vorticity (PV). Rossby waves exist because of the gradient in planetary vorticity
with latitude. Remember that we can describe absolute vorticity as:

PV =
ζa
H

=
ζ ′ + f

H

where ζa is the absolute vorticity, ζ ′ is the relative vorticity and f is the plane-
tary vorticity. Remember also that the planetary vorticity changes with latitude
as

f = f0 + βy

where β = ∂f
∂y = 2Ωcosφa

3.2.1 Wave propagation

With this in mind, we can consider Rossby wave propagation by thinking about
the PV a chain of parcels that don’t change height (H). If we further assume
that the parcel is meridionally displaced at time t1, and that its relative vorticity
was 0 initially (ζt0 = 0), then given the conservation of PV we can write:
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(f)t0 = (ζ ′ + f)t1

ζ ′t1 = ft0 − ft1 = −βδy

Because β is positive, the new relative vorticity will be positive for a south-
ward displacement and negative for a northward displacement. The pertur-
bation vorticity field induces a meridional velocity south west of the vorticity
maximum and northward west of the vorticity minimum (see Figure 4. Alter-
natively, we can consider the fact that positive vorticity is counter-clockwise in
the northern hemisphere. This picture indicates a progressive westward prop-
agation of the vorticity anomalies. These propagating vorticity anomalies are
Rossby waves.

Figure 4: Figure credit: Holton and Hakim (2012)

The process we have just described is the manner in which the meridional
gradient of potential vorticity acts as the restoring force for Rossby waves (i.e.
the meridional gradient resists meridional displacements). The speed of west-
ward propagation is the Rossby wave phase speed, c, and can be described as:

c =
ω

k
= Ū − β

l2 + k2

The phase speed is therefore west relative to the mean flow, Ū , and is in-
versely proportional to the square of the wave number. We can now consider a
few properties of the phase speed:

1 Since c = ω
k < 0 the phase speed of Rossby waves is negative and they

propagate westward relative to the mean flow. Note, however, that if the
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mean flow is greater than the phase speed the waves may appear to move
eastward relative to the ground even if they are moving westward relative
to the mean flow.

2 since ω is a nonlinear function of k, Rossby waves are dispersive

3 We can consider the group velocity (∂ω∂k ). ∂ω
∂k > 0 for k/l > 1 and ∂ω

∂k < 0
for k/l < 1. So the group velocity (energy propagation) for Rossby waves
is eastward for zonally short waves and westward for zonally long waves

4 The magnitude of the group velocity (see the slope in the below figure)
is typically greater for the westward-propagating long waves compared to
the eastward-propagating short waves.

The final point relates to the dispersion relation, which (ignoring the back-
ground flow) is typically written as

ω =
βk

l2 + k2

The Rossby waves appear on the bottom left of the figure. The figure can be
interpreted as follows. All Rossby waves travel west, and therefore appear in
the bottom left of the diagram, but the slope of the curve is negative for small
wave numbers (i.e. long Rossby waves have westward group velocity) while the
slope is positive for larger wave numbers (i.e. short Rossby waves have eastward
group velocity).
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Figure 5: Figure credit: Holton and Hakim (2012)

Let’s now consider a few specific numbers. For a mid-latitude synoptic scale
disturbance, where l ≈ k, and the zonal wavelength is order 6000 km the phase
speed of the Rossby waves is -8 m/s. Because the westerly wind speed often
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exceeds this (indeed it often exceeds 25 m/s), the Rossby waves may appear to
move east, although they move east less quickly than the mean flow. As the
wave number decreases the wavelength increases and so does the phase speed.
When the frequency of the wave is zero, the Rossby waves become stationary
(i.e. they are static relative to the earth surface).

3.2.2 Stationary waves

Stationary eddies are driven by zonal anomalies of elevation (i.e. mountains) and
temperature (land-sea contrasts). Both of these forcings are most pronounced
in the Northern Hemisphere, which contains the majority of the earth’s land
masses. This explains why stationary eddies are important in the Northern
Hemisphere but less so in the Southern Hemisphere, as shown in Figure ??.
But why the seasonal dependence? Well, orographic forcing is one means of
producing stationary eddies (and indeed this does depend on the seasonally
varying background flow) but stationary eddies are also produced by land-sea
temperature contrasts. And because oceans have a much larger heat capacity
than does the land, the land experiences much larger seasonal swings in temper-
ature, which means that continents tend to be warmer than the oceans in the
summer and cooler than the oceans in the winter. Cold flow off of the continents
in the wintertime move over the warm Gulf Stream to induce large baroclinicity.

In Figure 6 we are plotting mean sea level pressure (SLP) for the winter
and summer months. The longitudinal variations in this plot, most notably the
low pressure centers over the Pacific and Atlantic oceans in the winter, indicate
stationary eddies . Sea level pressure is a useful indicator of atmospheric flow
because at the surface air tends to spiral cyclonically (anti-clockwise in the NH)
inwards towards low pressure centers, and anti-cyclonically (clockwise in the
NH) away from high pressure centers.
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Figure 6: Credit: (?)

10



 

H 
L L

H H 

H H L
L

 

H H 

H 

H H H H 

L

Hadley Cell 

Hadley Cell 
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When we discuss stationary eddies, we’re more precisely referencing forced
Rossby waves (often in the mid-latitudes) that have a phase velocity that’s
static with respect to the earth’s surface (i.e. ω = 0 so c = 0). Another way
of thinking of this is that the waves propagate westward at the same speed
as the eastward mean flow. Note, however, that these waves can still have a
group velocity. Consider a Rossby wave in a uniform background flow, U. The
dispersion relation for this wave is:

ω = Uk − βk

k2 + l2

so if ω = 0 for stationary waves we can rewrite this as:

U =
β

k2 + l2

3.2.3 A simplified one-layer stationary wave model

We can illustrate many of the principles of forced and stationary waves by
considering the vorticity equation of a one-layer quasi-geostrophic model:

Dq

Dt
= 0, q = ζ + βy − f0

H
(η′ − hb)

where q is the potential vorticity, H is the thickness of the layer, hb is vari-
ations in the bottom topography, η is variation in the surface height, ζ is the
relative vorticity and β = ∂f

∂y . Now if we linearize the equation we get:(
∂

∂t
+ Ū

∂

∂x

)
q′ + v′q̄y = D′

where:

q′ = ζ ′ − f0

H0
(η′ − h′b)

q̄y = β − f0

H0
η̄y = β +

f2
0

gH
U
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Figure 8: Vallis uses ηb while we use hb and Vallis uses ∆η while we use η′.
Credit: (?)

Where the last equality followed from geostrophy. Here we assume that the
perturbation is in geostrophic balance so that

Ū = constant, V̄ = 0, f0Ū = −gη̄y

−f0v
′ = −gη′x and f0u = −gη′y

Then we can define ψ′ = g
f0
η′ so that ζ ′ = ∇2

hψ
′.(

∂

∂t
+ Ū

∂

∂x

)(
∇2
h −

1

L2
d

)
ψ′ + ψ′xq̄y = −Ū f0

H

∂

∂x
h′B − r∇2

hψ
′

where Ld =
√
gH
f0

is the Rossby radius of deformation. The first term on the
right hand side is the forcing term, and the second is the damping term. Note
that because we assume V̄ to be zero, the forcing term is only a function of
zonal variations in bottom topography.

We can then find the free and forced solutions. For the free solution we can
derive a dispersion relation for a damped Rossby wave as:

kc = ω = kŪ −
(β + Ū

L2
d
)k

K + L−2
d

− ir K

K + L−2
d
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where K = k2+l2. From this dispersion relation, we can find that any stationary
wave (ω = 0) must satisfy:

Ū =
β

k2 + l2
≡ ŪR

Where ŪR is the background flow at which the free solution is resonant. To see
where this occurs with regard to the imposed forcing, we find the plane-wave
solution to our linearized PV equation from above and get:

ψ̃(k, l) =

[
Ū f0
H

K(Ū − ir
k )− β

]
h̃b(k, l)

and we can substitute in for β to get:

ψ̃(k, l) =

[
Ū f0
H

K(Ū − ŪR − ir
k )

]
h̃b(k, l)

In the case of vanishing damping this solution has a singularity at Ū = ŪR (i.e.
where K = β

Ū
. This can be interpreted as the resonant wave number pair. Here

we can see that the resonant wavenumber depends on the background flow Ū ,
on how close the wavenumber pair is to the resonant value of β

Ū
, and on the

projection of the forcing h̃ onto the wavenumber pair.
We can now use these equations to look at the response of stationary wave to

orographic forcing, depicted in Figure 9. The top-left panel shows the station-
ary wave response to a mountain. The mountain excites a range of wavenum-
bers including the resonant wavenumber, which dominates the solution. The
trough downstream of the mountain has a scale that corresponds to the reso-
nant wavenumber. In the right hand panels we see a case in which sinusoidal
topography forces only a single wavelength response, which is not the resonant
wavenumber. We can also compare a slightly more detailed model to observa-
tions in Figure 3.2.3 to see the good agreement with the real world (but it’s
important to note that this solution is ‘tuned’ to match observations!). And
although we still need to consider the stationary wave response to heating, this
calculation at least shows that a stationary wave response to orography can
resemble what we see in the real world
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Figure 9: Credit: (?)
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Figure source: https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/
12-333-atmospheric-and-ocean-circulations-spring-2004/lecture-notes/

ch6.pdf

Although we defined the resonant wavenumber using the background flow, we
could also define the satationary wavenumber pair as K = Ks =

√
β/Ū . And so

we can finally make a note that for wavenumbers much larger than the stationary
wavenumber (K2 >> K2

s ) the topographic vorticity source is balanced by zonal
advection of relative vorticity, while for wavenumbers that are smaller than
the resonant wavenumber (K2 < K2

s ) the topographic source is balanced by

16



the advection of planetary vorticity (βv). And as we have mentioned before,
K2 = K2

s is the resonant frequency.

3.2.4 Propagation of stationary waves

Although the phase velocity of stationary waves is zero, the group velocity is
non-zero, which means that the wave energy still propagates. The propagation
depends on the horizontal wavenumbers (which are themselves a function of
topography and background flow).

The dispersion relation for Rossby waves in a uniform current Ū is

ω = kŪ − (βk)

k2 + l2 + (m2 + 1
4H2

0
)
f2
0

N2

so that the zonal group velocity is

cg,x ≡
∂ω

∂k
= Ū +

β[k2 − l2 − (m2 + 1
4H2

0
)
f2
0

N2 ]

K4

where K = k2 + l2 + (m2 + 1
4H2

0
)
f2
0

N2 and the meridional and vertical group

velocities are

cg,y =
∂ω

∂l
=

2βkl

K4
; cg,z =

∂ω

∂m
=

2βkm

K4

f2
0

N2

So we can see that the direction of propagation depends on:

1 Ū

2 the sign of l and m

3 whether k2 > l2 + (m2 + 1
4H2

0
)
f2
0

N2

3.2.5 Stationary wave response to thermal forcing

We’ll first consider the response to thermal forcing by considering the steady
linear thermodynamic equation:

f0Ū
∂v′

∂z
− f0v

′ ∂Ū

∂z
+N2w′ = Q

where Q is the heating term. We can also consider the vorticity equation:

Ū
∂ζ ′

∂x
+ βv′ =

f0

ρR

∂ρRw
′′

∂z

From these equations we can envision three potential balances, depending on
which process dominates

1 zonal advection dominates, and v′ ∼ QHQ

f0Ū
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2 meridional advection dominates and v′ ∼ QHU

f0Ū

3 vertical advection dominates and w′ ∼ Q
N2 . Then for large horizontal

scales the vorticity balance is βv′ ∼ f0
∂w′

∂z . For smaller horizontal scales
advection of relative vorticity may dominate the advection of planetary
vorticity

In the above equations HQ is the vertical scale of the heat source and HU is
the vertical scale of the zonal flow. We can apply these principles to a numerical
simulation below in Figure 10, which is a response to a ‘deep’ heating source
at 15N. The velocity field is vertical near the source (i.e. boundary heating is
balanced by adiabatic cooling), but in the far field it is dominated by a wavetrain
with a simple vertical structure of the form described by the 1-D topographically
forced barotropic Rossby wavetrain. This means that the remote solution to
boundary heating is equivalent to the a topographically forced solution that
induces the same vertical velocity (i.e. induces the same anomalous vorticity).

The local response to heating will depend on whether the solution is in the
tropics or extratropics. In the tropics small horizontal gradients in temperature
mean that anomalous heat sources are balanced by vertical motions (βv = f ∂w∂z ),
which leads to vortex stretching and on large spatial scales to advection of
planetary vorticity. In the extratropics the same heat anomaly will be balanced
by horizontal advection of temperature (i.e. advection of cool air from the north
v′ < 0), which may actually lead to sinking motion over the heat source.
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Figure 10: Credit: (?)

3.3 Origin of stationary waves (and associated storm tracks)

The stationary waves may therefore be a combination of any number of factors,
including

• Orography excites downstream troughs. Additionally, air that deflects
around orography creates a pool of cold air to the northeast of the moun-
tain (advection of cold air that was deflected to the north returning south-
ward) and warm, precipitating air on the leeward side of the mountain (as
winds that were deflected to the south return northwards and rise along
sloping isentropes to induce precipitation). So the local effects of moun-
tains reinforce the SW-NE tilt of precipitation / storm tracks.

• Land-ocean contrasts create differences in drag and moisture availabil-
ity as well as temperature contrasts.

• SST fronts such as the Gulf Stream and North Atlantic Drift create
closely spaced and diffuse isentropes, respectively.
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We can now revisit Figure 6, which provides an observational estimate of
the storm tracks in DJF. We can see that they have a decidedly SW-NE tilt,
and that the baroclinicity is greatest over the western boundary currents of the
oceans, downstream of the Rockies and Himalayas.
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