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Appendix

Technical Note on the Drought 
Impacts Model*

Raffaello Cervigni, Michael Morris, Federica Carfagna, Joanna Syroka, 
Balthazar de Brouwer, Elke Verbeeten, Jawoo Koo, Pierre Fallavier, 
Hua Xie, Weston Anderson, Nikos Perez, Claudia Ringler, Liang You

How many people live in dryland zones of Sub-Saharan Africa, and what are 
their livelihood strategies? How many of these people are vulnerable to droughts 
and other shocks, and of those who are vulnerable, how many are actually 
affected in an average year? How are the numbers of vulnerable and drought-
affected people living in drylands likely to evolve as the population increases 
and national economies grow and transform? To what extent can the impacts of 
drought be mitigated through policy interventions that improve the productiv-
ity and sustainability of livelihood strategies or provide protection in the form 
of safety nets? And how much would these policy interventions cost?

These questions are hard to answer, for two main reasons. First, because 
national statistical reporting services in many dryland countries are weak, 
detailed information is not always available either about the people who currently 
live in the drylands or about their livelihood activities. Second, because events in 
the drylands are influenced by a complex set of agro-climatic, demographic, eco-
nomic, and political drivers, projecting future trends is technically difficult. 

Despite these challenges, the team that carried out the Africa Drylands Study 
made an effort to quantify the scope of the challenge facing policy makers, with 
the objective of providing insight into the likely impacts and fiscal costs of alter-
native resilience-enhancing interventions. Answers to the above questions were 
generated with the help of a diverse set of modeling tools. 

The modeling effort proceeded in four stages:

1. Estimation of the 2010 baseline population [umbrella model]
2. Projection of population growth to 2030 [umbrella model]

*Technical details of the modeling approach are described more extensively in Carfagna, Cervigni, and Fallavier 
(2016). Unless otherwise noted, all figures and tables are based on the umbrella model.
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3. Modeling of likely effects of resilience interventions targeting:
 a) Livestock systems [livestock model]
 b) Rainfed cropping systems [cropping model]
 c) Irrigation systems [irrigation development model]

4. Consolidation of results [umbrella model]

This appendix provides details of the modeling tools, describes the data used 
for the simulations, explains key assumptions underlying the analysis, and dis-
cusses strengths and weaknesses of the approach.

Geographical coverage

Before considering the modeling tools, it is useful to review the geographical 
coverage of analysis. 

Definition of drylands
For reasons of simplicity and for consistency with widespread common practice, 
“drylands” are defined on the basis of the Aridity Index (AI). Under this approach, 
which has been endorsed by the 195 parties to the United Nations Convention to 
Combat Desertification (UNCCD) and which also is being used by the United 
Nations Food and Agriculture Organization (FAO), drylands are defined as 
regions having an AI of 0.65 or less. Drylands are furthermore subdivided into 
four zones: hyper-arid, arid, semi-arid, and dry subhumid. In some of the analysis 
(e.g., assessment of the effectiveness of crop farming interventions), the semi-arid 
zone is additionally divided into a “dry semi-arid zone” and a “wet semi-arid 
zone.” The Aridity Index ranges used to define these zones appear in table A.1. 

Country coverage
Because the various analyses required different types of information, the cover-
age varied depending on data availability (see table A.2). 

Table A.1 Aridity Index ranges used to define dryland zones

Aridity Class Definition Aridity Index range

1 Hyper-arid 0.00–0.03

2 Hyper-arid 0.03–0.05

3 Arid 0.05–0.20

4 Dry semi-arid 0.20–0.35

5 Wet semi-arid 0.20–0.50

6 Dry subhumid 0.50–0.65
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Table A.2 Coverage of the different modeling approaches

Region Country
Included in

Irrigation model Crop model Livestock 
model

East Africa Djibouti 9
Eritrea 9
Ethiopia 9 9 9
Kenya 9 9 9
Somalia 9
South Sudan
Sudan 9
Uganda 9 9 9
Tanzania 9 9

West Africa Benin 9 9
Burkina Faso 9 9 9
Chad 9 9 9
Côte d'Ivoire 9 9
Gambia, The 9 9
Ghana 9 9
Guinea 9
Guinea-Bissau 9
Liberia 9
Mali 9 9 9
Mauritania 9 9 9
Niger 9 9 9
Nigeria 9 9 9
Senegal 9 9 9
Sierra Leone 9
Togo 9 9

Central Africa Burundi 9
Cameroon 9
Central African Republic 9
Congo, Rep. 9
Congo, Dem. Rep. 9
Equatorial Guinea 9
Gabon 9
Rwanda 9

Southern Africa Angola 9
Botswana 9
Lesotho 9
Madagascar 9
Malawi 9
Mozambique 9
Namibia 9
South Africa 9
Swaziland 9
Zambia 9
Zimbabwe 9
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The data required for the overall population projections were available for 
almost all countries in Sub-Saharan Africa.

The data required for the vulnerability analysis were not available for all 
countries. For East and West Africa, the two subregions on which the analysis 
concentrates, the coverage was quite limited for East Africa and much more 
complete for West Africa.

The data required for the resilience analysis similarly were not available for all 
countries, although the extent of coverage varied depending on the intervention:

• Irrigation development: Data were available for all countries.
• Rainfed cropping systems: Data were available for most of the countries clas-

sified as dryland countries.
• Livestock systems: Data were available only for a subset of dryland countries.

The coverage of the overall resilience modeling analysis is thus defined by the 
coverage of the livestock systems model, which is the narrowest among the vari-
ous components. The countries included in the overall resilience analysis 
account for 85 percent of the projected 2030 population in West Africa and 
nearly 70 percent of the projected population in East Africa (figure A.1). 

Estimation of 2010 baseline population

As discussed at length in the main text of the book, for purposes of the Africa 
Drylands Study, resilience is determined by three key factors: (1) exposure to 
droughts and other shocks, (2) sensitivity to droughts and other shocks, and 

Figure A.1 Coverage of the umbrella model: Drylands population equivalent of countries 
included in the analysis
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(3) ability to cope with the effects of droughts and other shocks. The estimation 
of the 2010 baseline population was designed to generate estimates of the num-
bers of people falling into each of the three categories.

People exposed to droughts and other shocks
These are defined as people living in dryland areas, that is, areas with aridity 
classes ranging from hyper-arid to dry subhumid. UN population data were 
spatialized using gridding methods routinely used in the literature (in particular 
the Global-Urban Mapping Project [GRUMP] dataset developed at the Center 
for International Earth Science Information Network—CIESIN—at Columbia 
University).

People sensitive to droughts and other shocks
This group is defined as the share of people dependent on agriculture, estimated 
using recent IMF (International Monetary Fund) estimates (Fox et al. 2013) of 
the employment shares of agriculture, and assuming that people below working 
age depend on agriculture in the same proportion as people above working age. 
All those working in agriculture are assumed to be equally sensitive to drought 
shocks. This is admittedly a simplification, since the income share derived from 
agriculture varies across households. However, data needed to assess consis-
tently across countries the income shares derived from agriculture are not read-
ily available. Survey-based evidence suggests, however, that in dryland areas the 
share of income coming from farming and livestock is at least 60 percent of the 
total, so this assumption should not excessively bias the analysis.

People unable to cope with the effects of droughts and other shocks
This group is defined as the proportion of exposed and sensitive people living 
below the international poverty line of US$1.25 per day. Since separate esti-
mates are rarely available for the rural population only, the national poverty rate 
was used. The resulting estimates of the number of vulnerable people are prob-
ably conservative, because: (1) poverty is usually higher in rural areas than in 
urban areas, and (2) poverty is usually higher in dryland areas than in non-
dryland areas.

Recognizing that in drought years, people dependent on agriculture experi-
ence income losses, in some of the analyses in this book the number of people 
unable to cope is estimated using different poverty lines. Based on survey evi-
dence from the United Nations World Food Programme (WFP), it is assumed 
that households with incomes exceeding the international poverty line of 
US$1.25 per person per day by 15 percent, 30 percent, and 45 percent become 
unable to cope in the event of mild, moderate, and severe droughts, respectively. 
In each case, the corresponding poverty headcount is estimated based on 
income distribution data obtained from the PovCalnet database. 
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Using these definitions, the dimensions of vulnerability and resilience in the 
drylands of Sub-Saharan Africa were estimated in the baseline year of 2010.

Resilience analysis for livestock systems

Five simulation models were used to estimate the likely impacts of resilience-
enhancing interventions on feed balances, livestock production, and household 
income resilience, under different climate scenarios (baseline, mild drought, 
severe drought).

1. The BIOGENERATOR model developed by Action Contre la Faim (ACF) 
uses NDVI (Normalized Difference Vegetation Index) and DMP (Dry Matter 
Productivity) data collected since 1998 from Spot 4 and 5 (Ham and Filliol 
2012). The model was used to estimate spatially referenced usable biomass 
(that is, biomass that is edible by livestock) in the drylands.

2. The Global Livestock Environmental Assessment Model—GLEAM developed 
by Gerber et al. (2013) calculates at pixel and aggregate level: (1) crop 
byproducts and usable crop residues; (2) livestock rations for the different 
types of animals and production systems, assuming animal requirements are 
first met by high-value feed components (crop byproducts if given, and crop 
residues), and then by natural vegetation; (3) feed balances at pixel and 
aggregate level, assuming no mobility at pixel level and full mobility at graz-
ing shed level; and (4) greenhouse gases (GHG) emission intensity.

3. On the basis of the feed rations provided by GLEAM, the IMPACT model 
developed by the International Food Policy Research Institute (IFPRI) was 
used to calculate the production in drylands of meat and milk and to esti-
mate how production will affect overall supply of and demand for these 
products in the region. 

4. The CIRAD/MMAGE model consists of a set of functions for simulating 
dynamics and production of animal or human populations that are catego-
rized by sex and age class. The CIRAD/MMAGE model was used to calculate the 
sex/age distribution of the four main ruminant species (cattle, camels, sheep, and 
goats), the feed requirements in dry matter, and milk and meat production.

5. The ECO-RUM model developed by CIRAD under the umbrella of the 
African Livestock Platform (ALive) is an Excel-supported herd dynamics 
model based on the earlier ILRI/CIRAD DYNMOD. The ECO-RUM model 
was used to estimate the socioeconomic effects of changes in the technical 
parameters of the flock or herd (e.g., return on investments, income, and 
contribution to food security). The modeling exercise benefitted from live-
stock distribution data contained in the Gridded Livestock of the World 
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Figure A.2 Burkina Faso: Cumulative distribution of cattle ownership
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(GLW) database (Wint and Robinson 2007) and its most recent update GLW 
2.0 (Robinson et al. 2014). The analysis was informed as well by information 
and analysis produced by the FAO livestock supply/demand model (Robinson 
and Pozzi 2011). For details, see De Haan (2016).

The results of the models were used as inputs into the final step of the analy-
sis, namely the assessment of the number of households falling into each of 
three categories: (1) resilient, (2) vulnerable to shocks, and (3) likely to move 
out of livestock-based livelihoods. These three groups were estimated based on 
their ownership of livestock, measured in terms of Tropical Livestock Units 
(TLU). The values of the thresholds used to classify households into one of the 
three categories were estimated using ECO-RUM, and the corresponding popu-
lation shares were calculated using a log-normal estimate of the TLU distribu-
tion, which approximates quite well (figure A.2) actual TLU distributions 
emerging from survey data (Survey-based Harmonized Indicators Program 
[SHIP] database).

The share of households pt estimated to own less than a certain TLU thresh-
old t is estimated as follows:
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Table A.3 Gini coefficient of livestock ownership

Country Survey 
year

Income 
Gini

Livestock 
Gini

Notes

Burkina Faso 2003 39.60 52.07 Survey did not include medium-size livestock

Chad 2011 39.78 73.99 Source: Troisieme Enquete sur la Consommation 
et le Secteur Informel

Ethiopia 2011 33.60 55.42

Kenya 2005 47.68 78.13 Excluded TLU > 2,000 (considered outliers)

Mali 2010 33.02 57.81 Estimated based on Income Gini 

Mauritania 2008 40.46 66.49 Estimated based on Income Gini 

Niger 2007 43.89 67.26

Nigeria 2004 42.93 76.63 Excluded TLU > 1,500 (considered outliers)

Senegal 2005 39.19 76.05

Tanzania 2007 37.58 67.32 Survey did not include medium size livestock; 
excluded TLU >5,000 (outliers)

Uganda 2005 42.62 54.70 Calculation only includes medium-size livestock 
(figures on large-size livestock appear dubious)

where f (τ, μ, σ) is the lognormal probability distribution function; and the two 
parameters σ and μ are estimated as follows:

where  is the inverse of the standard cumulative normal distribution; 
G is the Gini coefficient, calculated from SHIP survey data (table A.3); and:

where t‒  is the average number of TLU/household, calculated by dividing the 
estimate of the total TLU for the relevant country/production system by the 
corresponding estimated number of households. 

Details on the TLU estimates by country and livestock production systems 
are contained in the background paper on livestock prepared for this study 
(De Haan 2016).

The critical TLU thresholds are as follows:

• Below 5 TLU per household: households are assumed to feel pressure to drop 
out of pastoralism.

• 5–19 TLU per household: households are assumed to continue as pastoral-
ists, but are expected to be vulnerable to drought and other shocks.

• Above 19 TLU per household: households are assumed to be resilient to 
drought and other shocks.
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In addition to the Gini coefficient (which is assumed constant throughout 
the simulation, with the exception of parametric reductions used to simulate the 
effect of redistribution policies), the other key parameter that determines the 
number of households below or above the thresholds is the average number of 
TLU/household.

The average number of TLU/household is estimated by dividing the total num-
ber of TLU in the drylands by the total number of households. The numerator in 
this expression is the maximum number of TLU that the existing biomass can 
support (on average), estimated through feed balance and herd modeling, based 
on different levels of access to feed as determined by herd mobility, access to 
water, insecurity, and urban and crop expansion (further details are provided in 
De Haan 2016). The denominator in the expression is the number of households 
estimated to be living in the drylands, based on population growth and projected 
economic transformation (as explained elsewhere in the book).

The effect of the livestock interventions on vulnerability (and thus indirectly 
on the number of drought-affected people) is captured by running the model 
with different values of the TLU resilience threshold (table A.4), estimated 
through ECO-RUM herd modeling. Lower TLU thresholds imply that for a 
given distribution of livestock assets, more households will be above the thresh-
old, and fewer households will be below the threshold, compared to the business 
as usual/no intervention scenario.

Interventions that result in the improvement of animal health reduce the 
mortality rate and increase the number of animals that can be sold, thereby 
reducing the number of TLU needed to reach a certain level of income (in par-
ticular, the international poverty line of US$1.25/day). Similarly, interventions 
that promote the sale of animals at a younger age for fattening in high rainfall 
areas increase the price received per animal and reduce overall mortality, simi-
larly reducing the number of TLU needed to reach a certain income level.

Resilience analysis for rainfed cropping systems

Similarly to the case of livestock, potential impacts on resilience of interventions 
targeting rainfed cropping systems are modeled. The analysis is carried out in 
two stages. In the first stage the objective is to estimate the potential impact of 

Table A.4 Tropical Livestock Units (TLU) required to attain resilience

Livestock 
system

Business as usual Health and early offtake

Baseline 
weather

Mild 
drought

Severe 
drought

Baseline 
weather

Mild 
drought

Severe 
drought

Pastoral 21.1 23.3 24.8 15.7 17.4 18.7

Agro-pastoral 12.9 14.2 15.3 7.4 8.3 8.5
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the adoption of best-bet crop farming technologies on the yields of crops grown 
by agro-pastoralist and crop farming households. In the second stage the objec-
tive is to estimate how these yield changes are likely to translate into income 
changes and how these income changes impact agro-pastoralist and crop farm-
ing households.

Modeling impacts of best-bet technologies on crop yields
The potential impact of the adoption of best-bet crop farming technologies on 
the yields of crops grown by agro-pastoralist and crop farming households is 
estimated using IFPRI’s grid-based crop modeling platform. Because it would 
have been impractical to model the full range of crops grown in the drylands, 
the analysis is carried out using the dominant cereal crop grown in any given 
location, identified with the help of IFPRI’s Spatial Production Allocation 
Model 2005 (You et al. 2014) in 2,294 grid cells distributed across 16 countries. 
The dominant rainfed crops are millet and sorghum in arid and dry semi-arid 
zones, and maize in wet, semi-arid, and dry subhumid zones. 

The crop yield simulations were carried out using three crop models that 
are part of the (Decision Support System for Agrotechnology Transfer) 
DSSAT Cropping System Model v4.5 (CERES-Maize, CERES-Sorghum, and 
CERES-Millet). Yields were simulated at the level of each grid cell over a 
25-year period. Using the assumption that weather in the drylands during the 
next 25 years will not be significantly different from weather experienced dur-
ing the past 25 years, daily weather data 1984–2008 were used as input (Ruane, 
Goldberg, and Chryssanthacopoulos 2015). Soil properties in each grid cell 
were represented using IFPRI’s HC27 Generic Soil Profiles Database (Koo and 
Dimes 2013). Planting date windows for the three representative crops were 
synchronized with the cropping calendar of the ARV model (described 
below). A representative variety of each crop was selected and used across the 
region. Additional details on the modeling platform setup are available in 
Rosegrant et al. (2014).

Best-bet crop farming technologies
The DSSAT framework was used to assess the potential impact on yields likely 
to result from the adoption of five best-bet crop farming technologies: 
(1) drought-tolerant varieties, (2) heat-tolerant varieties, (3) additional fertil-
izer, (4) agroforestry practices, and (5) water harvesting techniques. The poten-
tial impact on yields was modeled separately for each technology, as well as for 
several combinations of technologies expected to have synergies (e.g., varieties 
with drought tolerance and heat tolerance, drought- or heat-tolerant varieties 
grown with additional fertilizer, and drought- or heat-tolerant varieties grown 
in combination with agroforestry). 



Appendix: Technical Note on the Drought Impacts Model  241

1. Drought-tolerant varieties
To simulate the likely impacts of adoption of drought-tolerant varieties, 

which are known to have superior rooting ability in the presence of low levels 
of soil moisture, the model was adjusted by increasing the soil root growth fac-
tor parameter in each soil layer. Enhanced water extraction capability was also 
simulated by lowering the lower limit parameter in the soil profile. In the case 
of maize, the sensitivity was reduced by the anthesis-silking interval (ASI) to 
soil moisture content. 

2. Heat-tolerant varieties
The species characteristics definition for each of the three indicator crops 

includes parameters regarding the response of plant growth and grain filling 
rates to temperature. In the case of maize, for example, the CERES-Maize model 
defines the optimum and maximum temperatures for grain filling as 27°C and 
35°C, respectively. To mimic the ability of heat-tolerant varieties to continue 
growing and filling grain at higher temperatures, the values of these two param-
eters were increased by 2°C for the heat-tolerance simulations.

3. Additional fertilizer
The baseline, no-intervention scenario includes an inorganic nitrogen fertil-

izer application rate that is specific to each region, input system, and crop, 
which was obtained by calibration of simulated raw yields to FAOSTAT-
reported country-level yields. For the best-bet fertilizer intervention, the base-
line fertilizer application rate was increased by 50 percent.

4. Agroforestry
To simulate the improvements in soil fertility expected to result from 

decomposing leaves from Faidherbia trees planted in the same field as the 
indicator crops, for each cropping cycle an additional input of organic soil 
amendments was implemented 10 days before planting. The trees were 
assumed to be 20 years old in year 1, so that the amount of organic matter 
contributed throughout the simulation period remains constant. Each tree is 
assumed to produce 100 kg of leaves, of which 4.3 percent is nitrogen. These 
values are taken from scientific studies in West Africa. Two tree density values 
were simulated (5 trees per hectare and 10 trees per hectare), to test the sen-
sitivity of crop yields to tree density. Canopy coverage, which determines the 
area within each field that actually benefits from the decomposition of tree-
contributed organic matter, is assumed to be 10 percent and 20 percent for 
tree densities of 5 trees per hectare and 10 trees per hectare, respectively. 
These densities have been observed in many locations in the semi-arid dry-
lands where farmer-managed natural regeneration (FMNR) is practiced. It is 
useful to recall, however, that while Faidherbia is distributed throughout the 
drylands of Africa, it will not emerge through regeneration in all locations. 
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5. Water harvesting
To simulate the potential effects of harvesting runoff and storing it in situ for 

use in supplementary irrigation, a two-stage approach was implemented. The 
model was first run without any water management practices, and the output 
was analyzed to identify periods during the growing season when yields are 
constrained by lack of water. These periods represent opportunities for imple-
menting improved water harvesting and supplementary irrigation practices. 
The simulation results were also used to determine when supplementary irriga-
tion can have the largest impact on yields (e.g., immediately after germination 
and before flowering), and also to estimate how much of the harvested water 
would be available from the in situ storage. The model was then run again 
including harvested runoff water in the form of supplementary irrigation.

Modeling impacts of crop yield gains on vulnerability
In the second stage of the analysis, the objective is to estimate how changes in 
the mean level and distribution of yields associated with adoption of the best-
bet technologies are likely to translate into income changes and how these 
income changes could impact agro-pastoralist and crop farming households. 
This analysis was carried out using the Africa RiskView (ARV) model devel-
oped by the African Risk Capacity.

The ARV model uses static drought vulnerability profiles of the population 
in each area unit to measure the impacts of drought under different scenarios. 
More precisely, the ARV model estimates the proportion of the population that 
is likely to be affected by drought in the presence of drought of different magni-
tudes. The frequency, intensity, and duration of drought is measured in terms 
of deviations of a rainfall-based drought index (WRSI) below a defined bench-
mark multiplied by a scaling factor that translates negative WRSI deviations 
into potential household income deviations. 

Noteworthy features of the ARV model include the following: 

• Three different threshold WRSI deviations allow the definition of three lev-
els of vulnerability: (1) vulnerability to mild drought, (2) vulnerability to 
medium drought, and (3) vulnerability to severe drought. For each analysis 
unit, the overall vulnerability profile is calculated based on the percentages 
of the population vulnerable to each of the three levels of droughts.

• The scaling factor used determines the impact of WRSI deviation on crop 
yields, which in turn translates into impacts on agricultural income of 
households. 

• The vulnerability profiles are defined based on household survey data, which 
reveal the extent to which households in a specific area unit are both 
(1) exposed to drought (defined by their percentage of total income gener-
ated by agriculture-related activities) and (2) able (or not) to absorb and 
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recover from income shocks (defined by their ranking on a wealth scale com-
pared to the national poverty rate). 

Using the outputs of the DSSAT crop modeling simulations (described in the 
previous section) as an input instead of WRSI, the ARV model can simulate the 
impact of drought without and with the best-bet technologies. To avoid poten-
tial distortions associated with using yield estimates instead of WRSI values, it 
is assumed that the differences in crop yields attributable to adoption of the 
best-bet technologies translate into equivalent differences in agricultural 
income (in the ARV model, this is tantamount to setting the scaling factor to a 
value of 1:1). The threshold deviations from WRSI that define mild, medium, 
and severe drought are therefore adjusted accordingly for the use of DSSAT-
based input data.

Specific vulnerability profiles at Admin1 level (the first level of sub-national 
jurisdiction) are created for 2010 and 2030. The 2030 profiles are based on a 
number of assumptions about demographic increases, economic growth, and 
structural transformation (described above) that determine how the number of 
people below the poverty line and the percentage of people employed in agri-
culture will change by 2030. Within each Admin 1 level unit (that is, the first 
sub-national level of administrative jurisdiction), the vulnerability profiles can 
be broken down further by aridity zone. Vulnerability profiles for 2010 and 2030 
under the medium fertility scenario are available for the majority of East and 
West African countries. As an example, table A.5 shows for Mauritania the vul-
nerability profiles for 2010 and 2030 for the three drought cases.

Table A.5 Mauritania: Drought Vulnerability Profile for mild, medium, and severe drought 
(population, millions)

Region Aridity Mild drought Moderate drought Severe drought

2010 2030 2010 2030 2010 2030

Assaba Arid 0.101 0.141 0.122 0.170 0.140 0.196

Brakna Arid 0.094 0.132 0.113 0.159 0.131 0.183

Gorgol Arid 0.095 0.134 0.115 0.161 0.133 0.186

Gorgol Dry semi-arid 0.001 0.001 0.001 0.001 0.001 0.001

Guidimaka Arid 0.031 0.044 0.038 0.053 0.044 0.061

Guidimaka Dry semi-arid 0.043 0.060 0.052 0.073 0.060 0.084

Hodh Ech Chargui Arid 0.115 0.161 0.139 0.195 0.160 0.224

Hodh El Gharbi Arid 0.087 0.123 0.106 0.148 0.122 0.171

Tagant Arid 0.021 0.029 0.025 0.035 0.029 0.041

Trarza Arid 0.092 0.129 0.111 0.155 0.128 0.179

Total 0.680 0.953 0.821 1.150 0.947 1.327
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The definition of mild, medium, and severe drought is kept the same in both 
the 2010 and 2030 profiles. Furthermore, since the poverty line of US$1.25/day 
is used in both the 2010 and 2030 vulnerability profile definitions, a comparison 
of these two baseline profiles (BAU) gives an indication of how economic 
growth and structural transformation are likely to impact the proportion of the 
population vulnerable to drought as defined by the ARV model. For example, 
in Mauritania, even though the share of the poor in total population is projected 
to decline, the absolute number of people vulnerable to drought will actually 
increase by some 40 percent.

It is important to note that the definitions of drought associated with the 
vulnerability profiles—mild, medium, and severe—are not linked to return 
periods of drought, nor necessarily to the risk of drought occurring in a particu-
lar Admin 1 unit. Rather, the terms are related to levels of household income 
loss resulting from drought events. For this reason, adoption in an Admin 1 
level unit of one of the best-bet crop farming technologies does not change the 
vulnerability profile prevailing in that unit. Rather, the changes in the mean 
level and distribution of crop yields registered in that unit following the adop-
tion of the technology affects the impact on incomes of a mild, medium, or severe 
drought, and therefore affects the probability of hitting the drought-specific 
threshold. To capture the impact in 2030 of adopting one or more of the best-bet 
technologies, it is necessary to maintain the definition of drought in the model 
(in terms of the benchmark and thresholds) and then to calculate the changes 
in expected number of people affected by drought, given likely yield projections 
for the various intervention and non-intervention scenarios.

For example, consider first the non-intervention scenarios and the medium 
fertility scenario. Assume that the rainfall and the resulting crop yields that can 
occur in an area in 2010 and 2030 come from the same distribution, that is, that 
there is no change in climate. The DSSAT model can be used to generate yields 
for 25 years for each Admin 1 level/aridity zone unit. Assume these 25 values 
represent a sample from a yield distribution for both 2010 and 2030. These 25 
yield values can be imposed on the 2010 and 2030 vulnerability profiles to esti-
mate possible drought-affected populations in those scenarios. Figure A.3 
shows the estimated number of drought-affected people in Mauritania using the 
25 yield values.1 

To estimate the impacts of the best-bet crop farming technologies on vulner-
able populations, the DSSAT model was used to simulate how the various tech-
nologies impact the mean level and distribution of yields. Distributions of the 
drought-affected population estimated using the yield values from the 25 simu-
lation years for each best-bet technology can be compared to distributions of 
drought-affected populations estimated under the baseline scenario in which 
yields do not benefit from the adoption of any of the best-bet technologies. The 
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differences show the impact of each technology on the drought-affected popula-
tion, or in other words, on household resilience.

Figure A.3 shows, again for the case of Mauritania, the effects of adopting 
one of the best-bet interventions considered in the analysis (specifically, the 
adoption of a crop variety that is both drought-tolerant and heat-tolerant). 
Compared to the 2030 no-intervention scenario (BAU), the number of drought-
affected people declines in many years; in some years, the result is only to slow 
down the increase in the number of drought-affected people, while in other 
years the number of drought-affected people actually falls below the 2010 base-
line. Overall, adopting the drought- and heat-tolerant variety leads to an 11 
percent decrease in the number of drought-affected people. This example shows 
the benefit of a single intervention adopted in all polygons where it is effective. 
In the model, benefits are maximized when the entire set of interventions is 
considered, and in each polygon the intervention is selected that yields the larg-
est reduction in the number of drought-affected people. The results presented 
in the main text of the book are based on the latter approach.

Irrigation resilience analysis

The final intervention modeled is irrigation development. The assessment of the 
potential impacts of irrigation development on the population living in 

Figure A.3 ARV estimates of drought-affected people in Mauritania expected for each of 
25 simulated yield years
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drylands builds on the same drought characterization method used for the 
analysis of impacts of interventions in rainfed cropping systems (see the pre-
vious appendix section, Resilience analysis for rainfed cropping systems), 
combined with work done by IFPRI on irrigation investment potential in 
African drylands (Xie et al. 2015). In the IFPRI work, the potential for 
expanding large-scale irrigation (LSI) and small-scale irrigation (SSI) in dry-
land areas of Sub-Saharan Africa by 2030 are modeled separately. (See box A.1 
for details on the SSI modeling exercise.)

It is important to note that the area identified as having irrigation investment 
potential should be interpreted as “physical area equipped with irrigation infra-
structure,” since the water balance figures used to make the projections are long-
term averages. In drought years when water becomes scarce, irrigation can not 
be delivered everywhere, leaving part of the area equipped with irrigation infra-
structure unused. This becomes important in the latter stages of the analysis, 
when the impacts of irrigation on drought-affected people are estimated in the 
face of weather variability and climate change.

The impact of irrigation development on reducing vulnerability and increas-
ing resilience in the drylands was assessed using a two-step procedure. The first 
step involved estimating the area that is actually irrigated, taking into account 
climatic variability. The second step was to estimate, based on the results of the 
first step, the population that can be considered no longer affected by drought 
for each Admin 1 level/aridity zone unit. 

The key steps and assumptions used in the analysis are shown below:
SSI can use either surface water or groundwater. Groundwater acts as a buf-

fer against the impact of drought. The abundance of groundwater storage and 
accessibility to groundwater in African drylands is evaluated through geo-
graphic information system (GIS) analysis using groundwater depth and stor-
age data developed by British Geological Survey (table A.6).

Table A.6 Aquifer classification in British Geological Survey groundwater data

Class 1 2 3 4 5 6

Depth to groundwater 
(meters) 0–7 7–25 25–50 50–100 100–250 >250

Groundwater storage 
(millimeters) 0 <1,000 1,000–

10,000
10,000–
25,000

25,000–
50,000 >50,000
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BOX A.1

Estimating the expansion potential for small-scale 
irrigation (SSI)
The method used to assess SSI development potential begins with an irrigation 
suitability analysis. Within each pixel, various criteria are used to score the envi-
ronmental suitability of each pixel, including topography (slope), groundwater 
accessibility, distance to perennial surface water, proximity to existing irrigation, 
and market access. 

For the ex ante suitability analysis, the criteria parameters are divided into 
three classes, and linear interpolation is used within the classes to calculate the 
scores. Such a classification is similar to a stepwise function, which provides 
flexibility to adjust the threshold values after consulting with experts and stake-
holders. The overall rating of the irrigation suitability is the average of all scores 
for all applicable criteria. Since groundwater and surface water provide the 
same water resource to irrigation, overall suitability is calculated as the larger of 
the two scores. In other words: 

where: S = irrigation suitability score, S1 = score for slope, S2 = score for surface 
water access, S3 = score for ground water access, S4 = score for ground distance 
to existing LSI, and S5 = score for market access. 

The ex ante suitability analysis is done on a 0.5 x 0.5 km grid. The suitability 
score is then used as a percent of the pixel suitable for irrigation. In other 
words, the area with SSI development potential in a pixel is calculated as:

where: Airr,exante = area suitable for irrigation development (ha), and Apixel = pixel size 
(= 25 ha).

Next, the expansion of SSI is simulated. The starting point for the analysis is 
the current cropping pattern. Data on area harvested, production, and yield 
under irrigated and rainfed systems on a grid of approximately 10 x 10 km 
were obtained from the IFPRI Spatial Production Allocation Model (SPAM) data-
base (for details, see You, Wood, and Wood-Sichra 2009). Prior to the simula-
tion, the results of the ex ante suitability analysis were incorporated into the 
SPAM grid. The suitability score for each SPAM pixel was calculated as the aver-
age of the pixels in the coarser grid used for the suitability analysis, and the 
total area within each SPAM pixel deemed suitable for irrigation was calculated 
as the sum of the areas within the pixels used for the suitability analysis. 

To account for the expansion in cultivated area and changes in cropping 
patterns that may be caused by irrigation development, the following key 
assumptions were made: 

(continued next page)
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• Irrigation can occur during both the wet and dry seasons (both seasons are 
recognized in the analysis). Based on empirical evidence from past studies (Xie 
et al. 2015), the following 10 crops can be irrigated during the rainy season: 
(1) wheat, (2) rice, (3) maize, (4) sorghum, (5) millet, (6) potatoes, (7) sweet 
potatoes, (8) groundnuts, (9) sugarcane, and (10) vegetables. Wheat, maize, 
rice, and vegetables are assumed to be the dry-season irrigated crops. 

• During the irrigation expansion, (1) the currently existing rainfed cultivated 
area in a country will first be converted to irrigated area before new area is brought 
into cultivation/irrigation; (2) irrigation will expand according to the overall rating 
of the irrigation suitability, that is, irrigation development first takes place in the 
pixels with the highest suitability scores and is followed by development in 
pixels with the second highest ranking; and (3) irrigation expansion is con-
strained by water availability and national-level food demand for irrigated crops. 

The detailed simulation algorithm is described in Xie et al. (2015). It is 
assumed that the area cultivated for a given crop c on irrigated land, either 
converted from existing rainfed land or expanded from non-farming area, is 
proportional to the profitability of cultivating that crop.

 

where: Atotal = total irrigated area (ha), and profitc = annual profit farmers receive 
from cultivating crop c ($/ha). 

Profit is calculated as follows:

where:  Y i
 c   = yield of crop under irrigation (ton/ha), derived from FAO’s Global 

Agro-Ecological Zones (GAEZ) database (http://www.fao.org/nr/gaez/en/) under 
an assumption that irrigated yields would be 50 percent of the GAEZ potential yields 
for the 2050 analysis; for 2030 it is assumed that 80 percent of the 2050 yields can 
be achieved; Pc = producer price of crop c ($/ton), derived from the FAO PriceSTAT 
database, ProfitRatioc = profit margin (0 ~1) of crop c (PriceSTAT appendix table 1.3). 

To calculate the internal rate of return (IRR), first annual net revenues from the 
irrigation expansion are calculated without taking into consideration irrigation costs. 

The net revenue in the rainy season on converted rainfed land in a SPAM 
pixel ($/yr) is calculated as:

where: Y r
 c   = rainfed yield of crop c (ton/ha) and A  rc    = rainfed area of crop c in 

the pixel (ha).
The net revenue in the rainy season on newly cultivated, irrigated land in a 

SPAM pixel ($/yr) is calculated as:
(continued next page)

Box A.1 (continued)
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The net revenue on converted rainfed land or newly cultivated irrigated land 
in dry season is calculated as:

 

The net revenue per unit area (without consideration of irrigation costs) is 
calculated as:

With the calculated net revenue per unit area, the cash flow in year t 
required for the IRR calculation is calculated as:

 

where: IRR_Costc ($/ha) = the annualized capital investment cost for SSI expan-
sion, IRR_Costc = annual SSI operating costs ($/ha), and Bt and Ct = factors used 
to amortize capital investment and revenue in the calculation of cash flow 
associated with irrigation infrastructure development. The calculation assumes 
a five-year investment cycle and a 50-year investment horizon. 

Box A.1 (continued)

It is assumed that SSI in areas with groundwater depth below 25 meters (m) 
and storage greater than 10,000 millimeters (mm) is primarily groundwater-
based and not influenced by drought.

The variation of actual area under surface water-based SSI and LSI is mod-
eled as a function of the drought index I.

where Ai is actual area of irrigation in year i; AO is physical area equipped with 
irrigation; I is the drought index. Its value may vary between 0 and 1. Ai = AO if 
I = 0; and in a drought year, I > 0 and Ai < A0, α is a parameter controlling the 
contraction rate of irrigation area under drought. The higher the value of α, the 
larger the reduction in irrigation area in drought years.

The drought index is calculated as follows:

where:
Ybenchmark is the benchmark yield defined in the ARV model, and Yi is the crop 
yield in a given year t. Given that large reservoirs likely have multi-year storage 
capacity, LSI tends to be more resilient to drought than surface-water-based SSI. 
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Therefore, a smaller value of α is specified for LSI in the simulation. α is set to 
0.5 for LSI and 1.0 for SSI.

The simulation of “actual” LSI and SSI irrigated areas is conducted at 5-arc 
minute resolution (approximately 10 km by 10 km). The calculated pixel-wise 
values of “actual” areas of irrigation are aggregated to the Admin 1 level/aridity 
zone unit. The number of poor people in each unit is calculated under the 
assumption that “0.5 hectares of irrigated land supports one household (HH) 
comprising 5 people” and accordingly vulnerability shares are developed from 
the ARV model as:

where Popi is population in a unit and in year i is rendered resilient to drought 
through irrigation, Ai is actual area of irrigation in the unit, and year i, η is the 
vulnerability share of population obtained from the ARV model. A key assump-
tion underlying the analysis is that where there is potential for irrigation devel-
opment, vulnerable people will be able to take advantage of the opportunity and 
equip their farm with SSI equipment, regardless of their income level. In other 
words, the ability to take advantage of opportunities to invest in irrigation is 
assumed to be the same for every household located in areas with irrigation 
development potential, irrespective of their income level.

Consolidating the results of the resilience analysis

Estimated reductions in the numbers of drought-affected people likely to result 
from interventions in livestock systems and rainfed cropping systems, as well as 
from investments in irrigation, are consolidated in a set of figures presented in 
the book. 

Key elements of the consolidation process include the following:

• The livestock model was used to generate estimates of the number of vul-
nerable people (without and with the interventions) in hyper-arid and arid 
zones only (aridity classes 1 to 3, see figure A.4), using the model’s param-
eters for pastoral livelihoods.

• Results expressed in terms of number of households were converted into 
numbers of people by assuming an average household size of six people.

• The number of drought-affected people was estimated applying country-
specific drought incidence factors (average number of drought-affected peo-
ple as percentage of vulnerable people) obtained from the crop model. This 
is justified on account of the likely significant correlation between drought 
impacts on the staple crops modeled (maize, millet, sorghum) and impacts 
on the grasses found in rangelands.
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• The livestock model estimates of the number of households below the critical 
threshold of 5 TLU/household (figure A.4) were used to calculate the number 
of people who are likely to transition from pastoralism to farming; these 
households were then added to the number of vulnerable people engaged in 
crop farming. Country-level estimates of the number of people who are likely 
to transition from pastoralism to farming were distributed across the country’s 
polygons (intersection of administrative units and aridity zones) using each 
polygon’s share in the country’s total number of vulnerable people.

• The number of drought-affected people engaged in crop farming in aridity 
classes 4 to 6 (including both the original crop farmers as well as the people 
who are likely to transition from pastoralism to farming) was estimated 
using the crop model.

The approach used in this book does not consider the significant scope for 
implementing livestock-related interventions in agro-pastoral systems found in 
semi-arid and dry subhumid zones. For this reason, while the modeling results 
indicate the order of magnitude of the likely resilience benefits of the different 
interventions, they represent conservative lower bound estimates of the full 
potential. 

Cost estimates

Livestock
Cost estimates for the analysis of livestock systems are based on cost projections 
from five recently launched internationally funded projects dealing with pasto-
ral areas.2 These data were complemented with data obtained through a review 
of the literature. Table A.7 provides a summary of the cost per pastoral/agro-
pastoral person associated with these projects. 

Figure A.4 Schematic of livelihood modeling
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The range of values is significant, particularly for health improvement. 
However, the average is in line with the estimates of the World Organisation for 
Animal Health (OIE)-sponsored study (CIVIC Consulting 2009) for Uganda.

For development decision making, it is important to know the distribution 
between technology adoption-related and non-adoption-related costs, as well as 
between investment and recurrent costs. The assumptions used are based on the 
projects analyzed and the authors’ experience; they are provided in table A.8.

In aggregate, these figures seem high, at a total of about US$10 billion over 
the 20-year period (table A.9) or about US$500 million/year (about US$200 
million/year for the public sector.

They look more reasonable when calculated per beneficiary (number of 
people made resilient), as shown in figure A.5. 

Table A.7 Average cost/person/year (weighted according to number of beneficiaries) of 
the main interventions in five dryland livestock development projects

Intervention Average 
cost/person/year (US$)

Number  
of projects

Range  
(US$)

Health improvement 3.95 3 3.37–20.12

Market improvement  
(early offtake of bulls) 6.00 3 3.67–8.33

Early warning systems 3.72 2 1.79–2.09

Social services, etc. 5.30 2 2.39–5.82

Table A.8 Assumptions about the allocation of adoption- and non-adoption-related costs 
and of investments and recurrent costs for animal health and early offtake interventions

Item Allocation

Animal health non-adoption-related Of total health improvement budget, 20% in investments and 
25% in recurrent costs 

Animal health adoption-related Of total health improvement budget, 25% in investment and 30% 
in recurrent costs

Animal health improvement adoption-
related by livestock system 10% higher/person (higher delivery costs) in pastoral systems

Early offtake (market integration) 
Of total budget, 70% in investment and 30% in recurrent costs 
(high capital investment needed in infrastructure such as transport, 
processing facilities)

Early offtake non-adoption-related 
costs Nil, because of its currently nascent character

Adoption rate 70% for pastoral and 80% for agro-pastoral households for health 
improvement and 60% and 70%, respectively, for early offtake 

Public and private sector contribution
Public sector: 80% for cross-cutting costs, 60% for adoption costs 
in animal health improvement, and 20% for early offtake; the 
remainder belongs in the private sector 
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Figure A.5 shows that with the exception of Niger, the costs per person made 
resilient are significantly below the US$100–135 normally calculated for food 
aid. As expected, the annual cost per person made resilient is higher in pastoral 
areas. In general, the costs in East Africa seem to be lower than in the Sahel. At 
an average cost of US$27 per person per year, they are half the US$65 per per-
son per year estimated by Venton et al. (2012).3

Rainfed crops
The cost of adopting the rainfed cropping technologies includes public costs 
borne by the public sector during an initial period when a technology is first 
being introduced (e.g., costs associated with extension campaigns, demonstra-
tions, free samples; see table A.10), as well as private costs borne by the adopting 
farmers themselves (e.g., the cost of purchasing seed or fertilizer, or the cost of 
performing additional operations such as planting fertilizer trees or building 
water harvesting structures). 

Table A.9 Summary of costs (2011–14 prices, US$ billion) of health and early offtake 
interventions and their distribution between the public and private sectors (2011–30)

 Cross-cutting  
costs

Adoption costs 
animal health

Early offtake 
costs Total

Public sector 1.14 1.69 1.18 4.01

Private sector 0.29 1.13 4.71 6.12

Total 1.43 2.82 5.88 10.14

Figure A.5 Estimated unit cost (US$/person made resilient/year, expressed on a log scale) 
under baseline climate and health and early offtake scenarios
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Private costs (that is, costs borne by farmers themselves) were included in 
the analysis by adjusting downward the yield gain associated with adoption of 
the technology by a discount factor estimated to represent the cost of adopting 
the technology. To reflect the fact that farm households will use part of their 
income to purchase the inputs required for adopting the technology (e.g., labor, 
seed, fertilizer), costs were expressed in terms of the crop equivalent of purchas-
ing the required inputs, with production valued at country- and crop-specific 
farm-gate prices calculated as averages of the corresponding FAOSTAT values 
over the period 2000–12.

The cost (estimated on the basis of the literature and expert judgment) varied 
by technology (table A.11). In some cases it was modest (e.g., adoption of 
drought-tolerant and heat-tolerant varieties, adoption of FMNR), whereas in 
other cases it was more substantial (e.g., additional fertilizer, water harvesting). 
In recognition that technology adoption costs may be borne by the farmer or by 
the state (in the form of subsidies), sensitivity analysis was carried out to explore 
the impacts on adoption incentives of differing levels of private costs. 

To reflect the fact that the best-bet crop farming technologies will not all be 
profitable in every location, a switch was built into the model to determine 
which technology is adopted in any given polygon. The switch works as follows: 
if adoption of a given best-bet technology has the effect of reducing the number 
of drought-affected people, that technology is deemed effective and retained, 

Table A.10 Public costs of technology transfer (US$/hectare)

Description Millet Sorghum Maize

1: Drought tolerance 1.25 1.35 1.50

2: Heat tolerance 1.25 1.35 1.50

3: More fertilizer 10.00 10.00 10.00

4_5: Agroforestry 5 trees/ha 45.00 45.00 45.00

4_10: Agroforestry 10 trees/ha 45.00 45.00 45.00

5: Water harvesting 20.00 20.00 20.00

Table A.11 Private costs of technology adoption (US$/hectare)

Description Millet Sorghum Maize

1: Drought tolerance 3 3 15

2: Heat tolerance 3 3 15

3: More fertilizer 30 30 30

4_5: Agroforestry 5 trees/ha 7 7 7

4_10: Agroforestry 10 trees/ha 9 9 9

5: Water harvesting 45 45 45
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but if adoption of that technology has the effect of increasing the number of 
drought-affected people, the technology is deemed ineffective and discarded.

In addition, because synergies resulting from the simultaneous adoption of 
multiple best-bet technologies are not captured well by the DSSAT model, the 
analysis used the simplifying assumption that only the most effective technol-
ogy is adopted in a given location. Because simultaneous adoption of multiple 
technologies would certainly result in additional benefits (in terms of yield 
increases and income gains), the resilience-enhancing impacts of adoption of 
improved rainfed cropping technologies should be considered conservative.

Irrigation
Given the considerable uncertainty and wide range of irrigation technology and 
expansion costs, three sets of cost assumptions were considered in the analysis 
of irrigation development, ranging from US$8,000–US$30,000 per hectare for 
LSI, and from US$3,000–US$6,000 per hectare for SSI (table A.12). The 
medium-cost assumptions were used for the baseline scenario.

Notes

1.  The national population affected is the sum of the populations affected in each 
Admin 1/aridity zone.

2.  The Ethiopia-Drought Resilience & Sustainable Livelihood Program in the Horn of 
Africa (PHASE I), funded by the African Development Bank (US$48.5 million, 
2012); the International Fund for Agricultural Development (IFAD)- and World 
Bank-funded Regional Pastoral Livelihoods Resilience Project for Kenya and 
Uganda (US$132 million, 2014); the World Bank-funded Regional Sahel Pastoralism 
Support Project (US$250 million, under preparation); the World Bank/IFAD-
funded Ethiopia Pastoral Community Development Project–Phase II (US$133 mil-
lion, 2013); and the IFAD-funded Sudan Livestock Marketing and Resilience 
Program (US$119 million, under preparation).

3.  US$54/person/year for Kenya and US$77/person/year for Ethiopia. No data are 
available for the Sahel.

Table A.12 Irrigation development unit cost assumptions (US$/hectare)

Low Medium High

Capital Operation and 
maintenance Capital Operation and 

maintenance Capital Operation and 
maintenance

LSI 8,000 800 12,000 1,200 30,000 3,000

SSI 3,000 100 4,500 125 6,000 150

Source: Xie et al. 2015.
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