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While many Madden-Julian Oscillation (MJO) teleconnections are well doc-
umented, the significance of these teleconnections to agriculture is not well
understood. Here we analyze how the MJO affects the climate during crop
flowering seasons, when crops are particularly vulnerable to abiotic stress.
Because the MJO is located in the tropics of the summer hemisphere and
maize is a tropical, summer-grown crop, the MJO teleconnections to maize
flowering seasons are stronger and more coherent than those to wheat, which
tends to be grown in midlatitudes and flowers during the spring.

The MJO significantly affects not only daily average precipitation and soil
moisture, but also the probability of extreme precipitation, soil moisture and
maximum temperatures during crop flowering seasons. The average influence
on the probability of extreme daily precipitation, soil moisture, and maximum
temperature events is roughly equal. On average the MJO modifies the prob-
ability of a 5th or 95th, 10th or 90th, and 25th or 75th percentile event by
~2.5%, ~4% and ~7%, respectively. This means that an exceptionally dry
(10th percentile) soil moisture value, for example, would become ~40% more
common (happening 14% of the time) during certain MJO phases.

That the MJO can simultaneously dry soils and raise maximum air temper-
atures may be particularly damaging to crops because without available soil
water during times of heat stress, plants are unable to transpire to cool leaf-
level temperatures as a means of avoiding long-term damage. As a result,
even though teleconnections from the MJO last only a few days to a week,

they likely affect crop growth.
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1. Introduction

The Madden-Julian Oscillation (MJO) is a coupled ocean-atmosphere phenomena that, when it
is active, organizes tropical atmospheric circulation at planetary scales into regions of enhanced
and suppressed convection. It is the dominant source of subseasonal climate variability in the
tropics, accounting for ~40-50% of tropical outgoing longwave radiation (OLR) variance (Kessler
2001), although the intensity and duration of MJO activity varies from year-to-year.

MIJO-related anomalies propagate eastward with a phase speed of ~ 5 m/s, which gives the
oscillation a period of 30-60 days (see review by Zhang (2005)). Deep convective anomalies
associated with the MJO often first appear over the Indian Ocean and reach the western Pacific
about two weeks later. The surface expression of the MJO dissipates as it propagates eastward over
the cold sea surface temperatures in the eastern Pacific before reforming in the tropical Atlantic.
Although the MJO may be active in all seasons, the meridional location of the primary convective
envelope tends to follow the migration of the Inter-Tropical Convergence Zone (ITCZ) such that
MJO activity is displaced into the summer hemisphere by 5-10 degrees (Zhang and Dong 2004).

The influence of the MJO is not confined to the tropics. It has widespread teleconnections
that affect the climate of both the subtropics and the midlatitudes. The MJO has been shown to
influence the Asian (Lawrence and Webster 2002), Australian (Wheeler et al. 2009), West African
(Lavender and Matthews 2009; Matthews 2004; Barlow 2012), and Indian monsoons (Joseph et al.
2009; Pai et al. 2011), as well as the rainy seasons in East Africa (Pohl and Camberlin 2006a,b;
Berhane and Zaitchik 2014), southwest Asia (Barlow et al. 2005; Nazemosadat and Ghaedamini
2010; Barlow 2012), and southern Mexico (Barlow and Salstein 2006). In the midlatitudes a less
strong and possibly seasonally dependent influence has been found in the United States (Bond and

Vecchi 2003; Zhou et al. 2012), South Africa (Pohl et al. 2007), and Southeast South America
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(Grimm 2019; Alvarez et al. 2016). The MJO has also been shown to affect the probability of
extreme precipitation (Barlow et al. 2005; Mufoz et al. 2015) and maximum temperatures (Lee
and Grotjahn 2019).

Despite the extensive research on the connection between the MJO and climate anomalies, there
has been no effort yet to analyze how the MJO affects agriculture through its spatio-temporal
teleconnections. That the MJO is an intraseasonal rather than seasonal mode of variability may
complicate such analyses, but it does not indicate that the MJO is any less able to influence crop
yields. There is significant evidence that daily-scale abiotic stresses can appreciably affect final
crop yields (Schlenker and Roberts 2009; Lesk et al. 2016), particularly when crops have inad-
equate access to available soil moisture (De Boeck et al. 2011; Amani et al. 1996; Troy et al.
2015). Even a single day of exposure to damaging maximum temperatures can lower final crop
yields (Schlenker and Roberts 2009), and the MJO tends to persist in each of its 8 phases for 3-7
days (Pohl and Matthews 2007). If the MJO influences agriculturally relevant variables, such as
soil moisture and damaging maximum temperatures, during relevant periods of the crop growing
season, then it is likely to also affect crop yields.

In this article we outline the ways in which the MJO affects crop-relevant variables during local
wheat and maize growing seasons. In particular, we focus on the reproductive period of the crop
growing season because that is when grain crops are most sensitive to climate stresses (Barnabds
et al. 2008). Section two outlines the data and methods. Section three discusses the global struc-
ture and strength of MJO teleconnections relative to local crop growing seasons before moving
into a region-by-region description of each teleconnection. Results for both the strength of MJO
teleconnections, and the influence of the MJO on the probability of extreme precipitation, soil

moisture, and damaging maximum temperature anomalies are presented.
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2. Data and Methods

a. Agricultural data

To identify agricultural areas, we use harvested area data for wheat and maize around the year
2000 (Ramankutty et al. 2008; Monfreda et al. 2008). Although there are more recent datasets,
such as the harvested area dataset from the International food policy research institute (IFPRI) for
2005 (IFPRI and ITASA 2016) and 2010 (IFPRI 2019), we use cropped area in only an illustrative
context to highlight cropped regions. Global data for crop growing seasons is taken from Sacks
et al. (2010), and flowering season are approximated as being the three months preceding harvest
of each crop. We focus on crop flowering because it is the time when grain crops are most sensitive
to abiotic stresses (Barnabas et al. 2008). While in reality crops will be harvested earlier or later
depending on the year, limited data availability forces us to assume a static cropping calendar. We
use a combination of growing regions for each crop and past literature on MJO teleconnections to

choose the regions that we analyze.

b. MJO event identification

To identify MJO events we use the Wheeler-Hendon Realtime Multivariate MJO (RMM) index
Wheeler and Hendon (2004). The RMM indices (RMM1 and RMM2) are derived as a pair of
multi-variate empirical orthogonal functions of OLR, 850-hPa zonal winds, and 200-hPa zonal
winds. Projection of observations onto these indices measures the intensity and location of atmo-
spheric circulation and precipitation patterns associated with the MJO.

We define MJO events during crop flowering seasons as those days in which the amplitude of the
RMM index exceeds one standard deviation. We then create composites or distributions based on

all identified days. We mask out all gridboxes in which there are fewer than 1000 observations or
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where either maize or wheat is not cultivated. We furthermore test whether the distribution of each
variable at each point during a given phase is statistically distinguishable from the distribution of
that variable when the MJO is in its neutral phase (having an amplitude less than one). We mask

areas where the distribution is not significantly different at the 5% level.

c. Climate data

To identify MJO teleconnections we use daily-scale atmospheric variables from reanalyses, in-
terpolated station-based data, and products that integrate both satellite and station data using statis-
tical or physicaly-based models. For data on geopotential height and vertically integrated moisture
flux we use ECMWEF six hourly ERA-Interim values aggregated to a daily resolution (Dee et al.
2011). We standardize the geopotential height data by removing the mean and dividing by the
standard deviation at each point. For outgoing longwave radiation (OLR) we use gridded daily
data from the National Oceanic and Atmospheric Administration (NOAA) with temporal inter-
polation (Liebmann and Smith 1996). Velocity potential was not available in the ERA Interim
reanalysis, but was available as a derived variable from the NCEP/NCAR Reanalysis I (Kalnay
et al. 1996) via http://apdrc.soest.hawaii.edu/datadoc/ncep_daily.php. For informa-
tion on soil moisture, we use daily surface (0-10cm) soil moisture estimates from the Global Land
Evaporation Amsterdam Model (GLEAM) v3.2a, which uses satellite-observed soil moisture, veg-
etation optical depth, reanalysis air-temperatures and a multi-source precipitation product to derive
surface and root-zone soil moisture values (Martens et al. 2017). Daily precipitation data comes
from the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) at 0.25 degrees
(Funk et al. 2015). To estimate temperatures that would be damaging to crops, we use values of
daily maximum temperature at 2m from the Berkeley Earth dataset, which is a 1 degree gridded

interpolation-based statistical product (Rohde et al. 2013).
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While all datasets are observationally constrained, there remain significant limitations to each.
We expect that the temperature and precipitation data will be of higher quality in regions with
extensive gauge-based records as compared to more data scarce regions in which statistical ex-
trapolation or satellite-based measurements are the main source of information. Owing to a lack
of soil moisture gauge station data globally, GLEAM soil moisture estimates rely on a simple
water balance model constrained by assimilation of microwave satellite-based estimates, which
are limited to measuring the top few centimeters of the soil, and reanalysis-based soil moisture
estimates. GLEAM produces a best-guess observational constraint from the satellite and reanal-
ysis datasets using triple collocation analysis, an approach that has shown promise previously in

data-sparse regions (Anderson et al. 2012).

d. Daily climate anomalies

To estimate the impact of harmful increases in maximum temperature around flowering, we
follow the methods of Schlenker and Roberts (2009) by using critical temperature thresholds (7¢.)
for wheat and maize as 26°C and 29°C, respectively. Our temperature thresholds are chosen to
identify detrimental, not necessarily lethal, temperatures (Sdnchez et al. 2014). During the three
months around flowering, the number of ‘extreme degree days’ (EDD) were then calculated as
follows:

EDD =

n
max(O, Tmax,i - Tc)
i=1

where T,,,4y,; 1s the maximum temperature on the i’" day of the flowering period (that lasts n days).
We use an average of daily EDDs across all years to define the climatology of EDDs.

For atmospheric anomalies — geopotential height, vertically integrated moisture flux, vertical ve-
locity potential, and outgoing longwave radiation (OLR) — we similarly calculate daily anomalies

as the departures from an average across all years for the same day. For precipitation and near-
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surface soil moisture, which are potentially noisy variables, we first compute the average across
all years for the same day to define the daily climatology. We then perform a Fourier analysis on
the daily climatology using fast Fourier transforms and retaining only the first three harmonics to

calculate the smoothed daily climatology.

e. Probabilistic teleconnections

To calculate the 5%, 10%, 25%, 75%, 90% and 95% event thresholds we rank all precipitation,
soil moisture and EDD anomalies during the days when the MJO is inactive, then identify the
magnitude of the anomaly corresponding to each percentile. For each MJO phase we then count
the number of events that exceed that intensity threshold to calculate the frequency of events that
are at least that extreme. The anomalous probability of exceeding the 90th percentile for daily

precipitation during MJO phase 8, for example, would be calculated as:
5P(Pl’ > Pl’golMJOg) = P(PI’ > Pl’90|MJ03) —P(Pr > Pl’90|MJOnemml) (D)

Where Pryg is the event that marks the 90th percentile, Pr is daily precipitation, MJOg indicates
days when the MJO has an amplitude greater than one and is in phase 8, and MJO,,.,,;ro; indicates

MIJO with amplitude less than one.

f. Significance testing

We apply two types of significance testing in our analysis, one significance test that accounts for
testing many points in space simultaneously, and one for testing the significance of shifts in the
probability of exceeding a quantile threshold (e.g. 5Sth, 10th, 25th percentile). When we test for
significant MJO teleconnections in the global domain, we are testing a great number of points and
would expect to get a number of false positives because each grid point constitutes an individual

statistical test. We control the false discovery rate by following the methods of Wilks (2016), which
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includes a correction for spatial auto-correlation in climate data. Each grid point must pass the
field significance criteria to be considered statistically significant. For assessing the significance
of changes in the frequency of extreme events in a region, we apply the hypergeometric test,
which measures whether a sample distribution (in this case the days in a particular MJO phase)
has an inflated or deflated frequency of event occurrences (e.g. days with extreme precipitation)
compared to the reference distribution. Both significance tests are applied at the 95% confidence

level.

3. Results

a. Global teleconnections to wheat and maize growing seasons

Whether or not the MJO affects agriculture will depend on the intersection of (1) the seasonality
of MJO activity and (2) the timing of crop growing seasons. The MJO follows the seasonal mi-
gration of the Inter-Tropical Convergence Zone (ITCZ) such that precipitation and wind variance
associated with the MJO tend to be centered in the summer hemisphere by about 10 degrees (e.g.
10N in boreal summer, 10S in austral summer; Zhang and Dong (2004)). This tendency is re-
flected in OLR (Figs. 1 and 2) and moisture flux composites (Figs. 12 and 13), which are similarly
displaced into the summer hemisphere.

The crop reproductive period, when grain crops are most sensitive to abiotic climate stresses
(Barnabaés et al. 2008), occurs in the months prior to harvest; maize flowers during local summer
while wheat flowers in local spring. Because the MJO is displaced into the summer hemisphere,
and the most sensitive period of the maize lifecycle occurs during summer, one may anticipate that

the MJO will strongly affect summer-flowering crops like maize.

10
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In addition to seasonality, however, the location of MJO teleconnections relative to crop growing
locations is important. The majority of anomalous convection and moisture fluxes associated with
the MJO are confined to the tropics (roughly 20N/S; see Figs 1 - 13; see also Zhang and Dong
(2004)), although there are teleconnections outside of these latitudes as well. These MJO-forced
anomalies will overlap with maize growing regions more frequently than with wheat growing
regions because maize is grown in the tropics while wheat is often grown in the midlatitudes
(Figs. 3 and 4).

The seasonality and location of crops and that of the MJO explain why the MJO has a stronger,
more coherent effect on maize flowering seasons as compared to wheat flowering seasons. Because
maize is often grown in the summer hemisphere near the equator, the MJO has a coherent influence
on over a dozen independent maize seasons globally (Fig. 3). The magnitude of the MJO influence
often reaches 20-40% of expected daily precipitation during the maize flowering season. Because
wheat is not a summer crop, and is often grown in the midlatitudes, the MJO influence on wheat
flowering seasons is more location-dependent. MJO teleconnections to wheat flowering seasons in
the tropics and subtropics — Southwest Asia, India and East Africa — tend to be stronger and more
coherent compared to those in the midlatitudes — Southeast South America, The United States,
Australia, South Africa, and the North China Plain (Fig. 4)

The MJO affects both precipitation and soil moisture during the wheat and maize growing sea-
sons, although it tends to influence precipitation more strongly than soil moisture compared to
a day with neutral conditions (Figs. 3 and 4). For both wheat and maize, the strength of MJO
teleconnections to soil moisture during the growing season tends to be a 2.5-5% modification of a
climatological value (5-10% difference from positive to negative phase), although local modifica-

tions can be over 10% (20% difference between positive and negative phases). The influence of the

11
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MJO on precipitation in many regions exceeds 25% (50% difference between phases) and in some
regions, such as East Africa, its influence can exceed 50% (100% difference between phases).
The MJO modifies the probability of extreme events at least as strongly as it does the probability
of moderate events. The MJO increases the relative probability of a Sth percentile event by 50%
(e.g., an event that normally happens 5% of the time instead occurs 7.5% of the time), of a 10th
percentile event by 30% (10% event becomes 13% event) and of a 25th percentile event by 20%
(25% event becomes 30% event) during both maize and wheat flowering seasons (Figs. 5 - 10).
Furthermore, the MJO affects the probability of dry events (5, 10 and 25%) more strongly than it
does wet events (95, 90, 75%), particularly during the maize flowering season. This is consistent

with observations made by Pohl et al. (2009) for the Sahel and West Africa.

b. Regional analyses
1) AFRICA

In East Africa, the MJO affects precipitation differently in the highlands and the coast. In the
highlands precipitation anomalies are controlled by the large-scale atmospheric stability condi-
tions imposed by the MJO, while near the coast advection of moisture by local low-level winds
dominates (Pohl and Camberlin 2006a,b; Berhane and Zaitchik 2014; Barlow 2012). In the high-
lands around Lake Victoria, phases 6-8 tend to lead to suppressed convection (Fig 2 and 3), which
decreases soil moisture and increases the probability of extremely hot temperatures during phases
7-1 (Figs. 6 and 7). The teleconnections to the wheat growing highlands in Ethiopia are similar
to those in the highlands of Kenya, with the exception that in Ethiopia teleconnections to extreme
precipitation are often not significant. While no detailed analysis on the dynamics of MJO tele-
connections to the Ethiopian highlands was available, it is likely that the MJO teleconnections will

be dominated by large-scale atmospheric stability as they are elsewhere in the highlands of East

12
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Africa (Pohl and Camberlin 2006a; Berhane and Zaitchik 2014). The moisture teleconnections
in coastal East Africa - here the focus is on southern Somalia - are instead related to moisture
transport into/out of the region (Figs. 12-13; see also Pohl and Camberlin (2006a) for the MAM
and OND seasons)

Southern Africa, although largely outside of the main convective envelope of the MJO, has
significant teleconnections to crop growing seasons. Increased convection first shows up over
Namibia in western South Africa during phases 5-6 and propagates south and east into northeast
South Africa in phases 6-7 before increased convection arrives over Mozambique and Malawi in
phases 1-3 (see Figs. 1, 3 and 4; Pohl et al. (2007)). Phases 6-1 of the MJO tend to be wet
(Figs. 3-4) and to decrease the probability of extremely hot conditions during the wheat flowering
season (Fig. 10). Wet phases over Northeast South Africa (phases 6-1) are associated with a
reinforcement of climatological easterly and northerly moisture fluxes from the Western Indian
Ocean and Zambia/Botswana/Zimbabwe into South Africa (Figs. 12 and 13).

In West Africa, the MJO increases the probability of wet conditions in phases 1-3 and of dry
conditions in phases 5-7. Soil moisture teleconnections tend to lag precipitation teleconnections by
one phase, as do teleconnections to maximum temperature (Fig. 3, 5-7). These teleconnections are
primarily a response to westward propagating Rossby waves generated by MJO-related convection
~10 days earlier (Lavender and Matthews 2009; Matthews 2004; Barlow 2012). When the MJO
suppresses convection in the warm pool (phases 7-2; see Figs. 1 and 2), it generates Rossby
waves that travel west and an equatorial Kelvin wave that travels east (visible in lower-level GPH
anomalies, Figs. 12 and 13). The westward propagating Rossby wave moves across West Africa
5-10 days after being generated, destabilizes the atmospheric column and enhance rainfall in the
region (Lavender and Matthews 2009; Matthews 2004). The reverse is true 5-10 days after phase

3-6. Because the MJO propagates eastward, these lagged responses may alias onto composites of

13
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MJO temperature and precipitation anomalies (Vigaud and Giannini 2018). The wet conditions in

phases 1-3 are, therefore, a lagged response to convection over the warm pool in phases 7-2.

2) ASIA

The MJO has strong teleconnections to wheat growing season precipitation and soil moisture in
Southwest Asia, and less strong but still at times significant teleconnections to the Fertile Crescent
(Fig. 4). On average, suppressed convection over the eastern Indian Ocean during phases 8-1
(see Figs. 1 and 2) leads to an increase of precipitation over Southwest Asia (Fig. 4 and Barlow
et al. (2005); Barlow (2012)). The opposite is true in phases 4-5. MJO teleconnections affect
not only the mean precipitation in Southwest Asia, but also precipitation frequency (Nazemosadat
and Ghaedamini 2010) and extremes (Barlow et al. 2005). During phases 4-6 the MJO increases
the probability that a day in Southwest Asia will be extremely dry, while phases 8-2 increase
the probability of an extremely wet day (Figs. 8)-9). Soil moisture teleconnections tend to lag
precipitation teleconnections by about one phase (Fig. 4). Maximum temperature teleconnections
in both regions are mostly not statistically significant (Fig. 10).

In India the MJO affects precipitation and soil moisture during both the maize and wheat grow-
ing season in major growing areas (Figs. 3 and 4). It is worth noting that the strength of MJO
teleconnections in Figures 3 and 4 are expressed as a percent of average daily precipitation during
the growing season — not precipitation on rainy days — and that maize is grown during the monsoon
season while wheat is grown during the dry season. So although the MJO has a weaker absolute
effect on Indian precipitation during the wheat growing season (Figs. 1 amd 2), the effect is still
significant in the context of dry-season rainfall and soil moisture (Fig. 4).

The eastward propagating deep convection anomalies associated with the MJO generate

meridionally-propagating Rossby waves that modify precipitation over India in the 10-25N region

14
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up to two weeks later (Lawrence and Webster 2002). The longest monsoon breaks are associated
with times when the MJO suppresses convection over the Indian Ocean (Joseph et al. 2009; Moron
etal. 2012). An increased frequency of MJO phases 7-2 are associated with long monsoon breaks,
although the longest breaks are associated with phase 7 (Pai et al. 2011). These past analyses
are consistent with our OLR composites during the monsoon season (Figs. 1 and 2) that show
increased OLR during phases 7-2, which is an indication of decreased precipitation (Fig. 3) that,
with a one to two phase lag, leads to decreased near-surface soil moisture and increased maxi-
mum temperatures. The lag between precipitation and maximum temperature — likely a result of
the time needed for the soil to dry out and force a shift in the partitioning of latent to sensible
heat — accounts for why the frequency of extreme temperatures are increased during phases 1-3
rather than 7-2. During phases 4-5 OLR decreases, precipitation increases, soil moisture increases,
and maximum temperatures decrease (Figs. 3 and 5-7). During the dry wheat season, the MJO
decreases the probability of moderate to exceptionally wet days in phases 4-6 and increases the
probability of exceptionally dry soil moisture and hot temperatures (Figs. 4 and 8-10).

In the North China Plain, MJO phase 2 has increased precipitation, while phases 7-1 tend to
be dry (Figs. 4). Soil moisture teleconnections persist for 1-2 phases after precipitation telecon-
nections (Figs. 4 and 8-9). Moisture transports into and out of the North China Plain may be
related to the Rossby wave north of the convective center of the MJO (Figs. 1-13) but a proper
moisture budget analysis is beyond the scope of this paper. Provided the agricultural importance
of the North China Plain, further research on boreal springtime MJO teleconnections to this region

1s needed.
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3) AUSTRALIA AND THE MARITIME CONTINENT

Over the Maritime Continent, OLR becomes a less good proxy for precipitation because large-
scale atmospheric conditions may differ from the localized dynamics that govern precipitation over
land. Precipitation anomalies over land tend to lead the eastward-propagating of OLR anomalies
by ~6 days, such that large scale atmospheric conditions can be unfavorable to precipitation over
the ocean but precipitation over land in Indonesia will be enhanced (compare Figs. 1 and 2 to Fig.
5; Peatman et al. (2014)).

During the maize flowering seasons, MJO phases 2-4 tend to be wet and cool, while phases 6-8
tend to be dry (Figs 6 and 5 - 7). Our results for June to September (Figs. 1, 2 and 6) lead those
of Moron et al. (2015), who found that during the September-April season phases 1-3 tend be wet
and phases 5-7 tend to be dry. This discrepancy highlights that MJO teleconnections have a degree
of seasonal variability, and that analyses conducted using different seasons may not be directly
applicable to the growing season.

During the wheat growing season in Australia, the MJO affects mean precipitation and both
mean and extreme soil moistures and temperatures. Wheeler et al. (2009) find that in extratropi-
cal Southeast Australia, the MJO both modifies large-scale ascent/descent and moisture transport
via low-level meridional winds. The MJO increases moisture transport into Southeast Australia
during phases 5-7 and increases moisture transport out of the region in phases 8-2 (Figs. 1 and 2;
Wheeler et al. (2009)). This leads to increased precipitation during phase 5, which increases soil
moisture in phases 5-7, and decreases precipitation during phases 1-2, which decreases soil mois-
ture during phases 1-3 (Fig. 4). The MJO affects growing season extremes as well by increasing

the probability of extremely dry soil moisture days and damaging extreme temperatures during

16



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

phases 1-3 (Figs 6 and 7). The opposite effect of the MJO on extremely wet, cool, days is less

pronounced.

4) NORTH AND CENTRAL AMERICA

The MJO affects precipitation, soil moisture and maximum temperatures during the maize flow-
ering season across Southern Mexico and Central America. In phases 8-2 convection is enhanced
while convection is suppressed during phases 4-6 (Figs. 1, 2 and 3). This strong MJO telecon-
nection is clearly visible during boreal summer (JJAS) but not in austral summer (DJFM; Figs.
12 and 13). Barlow and Salstein (2006) conclude from gauge station data that the precipitation
signal is strongest on the western side of the continent as a result of westerly moisture flows and
orography. During phases 8-2 westerly winds advect moisture onshore (Figs. 12 and 13), where
steep topography induces precipitation and increases soil moisture (Fig. 3). These same conditions
bring opposite conditions to the eastern side of southern Mexico and Central America.

The MJO also affects the frequency of extremely dry, hot days in Mexico and Central America.
During phases 3-6 the probability of days with extremely low precipitation, low soil moisture and
hot temperatures increases while the probability of wet, cool days decreases (Figs. 5-7). Phases
8-2 exhibit an increased number of cool, wet days and decrease in the frequency of dry, hot days,
although the effect is more muted than during phases 3-5

The MJO has previously been found to affect precipitation over the Pacific Northwest with
a phasing that is seasonally dependent (Bond and Vecchi 2003). In agreement with Bond and
Vecchi (2003), we find that mean precipitation in the Pacific Northwest increases (Fig 4) when
deep convection is suppressed in the eastern Indian Ocean (Figs. 1 and 2) and there are westerlies
near the date line (Figs. 12 and 13). However, when considering specific quantiles of precipitation,

the results are either not statistically significant or are inconsistent with the MJO uniformly shifting
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the distribution of precipitation towards wetter or drier anomalies. In either case, it appears that
teleconnections to the region are not easily generalizable for the context of agriculture.

MIJO teleconnections to wheat flowering seasons in the Great Plains are weak and only
marginally significant. The MJO tends to make the southern Great Plains dry during wheat flow-
ering seasons in phases 4-6 and wet during phase 2, but has an inconsistent or insignificant effect
during most other phases (Figs 4, 8-10). Our results for springtime precipitation teleconnections
differ from those of Zhou et al. (2012), who focus on winter precipitation teleconnections and find

that phases 5-6 tend to be wet.

5) SOUTH AMERICA

The MJO affects the maize growing seasons in Western South America, with phases 8-2 favoring
wet conditions while phases 3-7 tend to be dry (Fig. 3). An increased probability of extremely high
precipitation, high soil moisture and low maximum temperatures accompanies the wet conditions
in phases 1-2, while extremely low soil moisture, low precipitation are more frequent in phases 3-7
(Figs. 5-6). Furthermore, phases 3-4 are associated with an increase in the frequency of extremely
hot, damaging temperatures (Fig. 7)

Over Northeast Brazil OLR and atmospheric descent is increased during phases 4-6 (Figs. 1 and
2), which translates into reduced precipitation, decreased near-surface soil moisture (Fig 3), and an
increased probability of damaging maximum temperatures (Fig 7). During these phases Northeast
Brazil is more likely to experience extremely dry conditions, and less likely to have exceptionally
wet days as measured by both precipitation and soil moisture (Figs. 5 and 6). During phases 8-2
OLR is decreased over Northeast Brazil (Figs. 1 and 2), indicating an increase in precipitation
(Fig. 3). In these phases the frequency of exceptionally wet days is enhanced — particularly in

phase 8 — and the probability of extremely hot conditions decreases (Figs. 5-7). These results are
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consistent with those of (Valadao et al. 2017; Alvarez et al. 2016), who use station data and gridded
station data, respectively, to demonstrate the seasonality of MJO teleconnections to precipitation
in South America.

Similar to Northeast Brazil, central eastern South America tends to be wetter during phases 8-2
and drier during phases 3-7 (Fig 3) with extremely wet, cool days occurring more frequently in
phases 8-2 and extremely hot, dry days occurring more frequently in phases 3-6 (Figs. 5-7). These
findings are consistent with those of Grimm (2019), who uses gridded station data to measure the
effects of the MJO on average and extreme precipitation events. The asymmetric influence of the
MIJO in central eastern South America (e.g. five phases favor dry anomalies while only three favor
wet anomalies) is also consistent with the findings of Grimm (2019).

In Southeast South America, the MJO forces wet conditions during phases 3-6 and dry, hot con-
ditions during phase 8 in southeastern South America during austral summer, the maize growing
season (Figs. 3, 5 - 7; see also Grimm (2019) and Muiioz et al. (2015, 2016)). The MJO, however,

has little coherent influence on extreme temperatures aside from phase 8 (Fig 7).

4. Discussion

Our analysis demonstrates that the MJO affects not only precipitation, but also soil moisture
and damaging maximum temperatures — those that exceed 26°C for wheat or 29°C for maize —
during local crop flowering seasons (see Figure 11 for a summary). That the MJO simultaneously
drys the soil and increases maximum air temperatures is particularly relevant to crops because
without available soil water during times of heat stress, crops are unable to transpire to cool leaf-
level temperatures as a means of avoiding long-term damage. Even a single day spent exposed to
extreme heat can significantly lower the final yield of a crop (Schlenker and Roberts 2009). So

although MJO teleconnections may last only a few days to a week, they may affect crop yields.
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The MJO affects both wheat and maize flowering seasons, but it more strongly affects maize
flowering seasons than wheat flowering seasons. The MJO is preferentially located in the tropics
of the summer hemisphere and maize is a tropical, summer-grown crop. The MJO teleconnections
to maize regions during flowering seasons are therefore stronger and more coherent than those to
wheat, which tends to be grown in midlatitudes and flowers during the spring. These findings may
extend beyond the comparison of maize to wheat. Due to the seasonal, latitudinal migration of
convection associated with the MJO, it is likely to more strongly affect the growing conditions of
tropical and sub-tropical, summer crops as compared to those grown in other seasons or in other
regions, although further research is needed to confirm this.

Of particular relevance to crop yields is the finding that the MJO affects climate extremes during
the crop flowering season. The average influence on extreme daily precipitation, soil moisture, and
maximum temperature events is roughly equal. On average the MJO modifies the probability of a
Sth (95th), 10th (90th), and 25th (75th) percentile event by 2.5%, 4% and 7%, respectively. This
means that an exceptionally dry (10th percentile) soil moisture value, for example, would become
~40% more common (happening 14% of the time) during certain MJO phases.

Our results provide an indication of the extent to which the MJO affects global crop growing sea-
sons, and the mechanisms by which it does so. With the development of seasonal-to-subseasonal
(S2S) forecasting (White et al. 2017; Vitart and Robertson 2018), there is increasing evidence that
climate anomalies associated with the MJO may be predictable at lead times of 3-4 weeks in some
regions (DelSole et al. 2017; Pegion et al. 2019). But the lack of sector-specific studies compli-
cates the process of integrating S2S forecasts into an operational setting (Vitart and Robertson
2018). Our results can serve as a guide for improving model forecasts of subseasonal predictions

for the agriculture sector.
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5. Appendix A

Figurers 12 and 13 are composites of atmospheric MJO teleconnections to standardized geopo-
tential height and total column moisture transport in each phase. These figures provide context
when assessing how MJO teleconnections lead to anomalous precipitation and temperature during

crop growing conditions.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

MIJO convection anomalies in phases 1-4 during Dec-Mar (left column) and Jun-Sep
(right column). Outgoing longwave radiation (OLR; colors) and 200 hPa vertical ve-
locity potential (contours) for phases 1-4 (left panels) and phases 5-8 (right panels).
Negative OLR indicates increased cloud cover, which is often an indication of in-
creased precipitation. Positive OLR indicates clear sky conditions associated with at-
mospheric descent and dry conditions. A negative velocity potential at 200 hPa indi-
cates divergence in the upper atmosphere, which is caused by deep convection in the
region, while a positive velocity potential indicates a stable upper atmosphere. User-
specified seasonal composites available in IRI Data Library MJO Maproom: http :
//iridl.ldeo.columbia.edu/maproom/Global /Climatologies/MJO_SPH .html

MIJO convection anomalies in phases 5-8 during Dec-Mar (left column) and Jun-Sep
(right column). Outgoing longwave radiation (colors) and 200 hPa vertical velocity
potential (contours) for phases 1-4 (left panels) and phases 5-8 (right panels). Neg-
ative OLR indicates increased cloud cover, which is often an indication of increased
precipitation. Positive OLR indicates clear sky conditions associated with atmospheric
descent and dry conditions. A negative velocity potential at 200 hPa indicates di-
vergence in the upper atmosphere, which is caused by deep convection in the re-
gion, while a positive velocity potential indicates a stable upper atmosphere. User-
specified seasonal composites available in IRI Data Library MJO Maproom: http :
//iridl.ldeo.columbia.edu/maproom/Global /Climatologies/MJO_SPH .html

Relative strength of MJO teleconnections during the maize growing season. Top row: num-
ber of phases with statistically significant (p<0.05) precipitation (left panel) and soil mois-
ture (right panel) teleconnections. Bottom three rows: Precipitation (thin blue and brown
bars) and soil moisture (thick purple and brown bars) anomalies during each MJO phase rel-
ative to an average day when MJO is inactive during the growing season. Regions defined
by boxes shown in the top row. A precipitation bar in a given phase with a value of 20%, for
example, indicates that on average precipitation during that phase is 20% greater compared
to an average day in the growing season when the MJO is inactive.

Relative strength of MJO teleconnections during the wheat growing season. Top row: num-
ber of phases with statistically significant (p<0.05) precipitation (left panel) and soil mois-
ture (right panel) teleconnections. Bottom three rows: Precipitation (thin blue and brown
bars) and soil moisture (thick purple and brown bars) anomalies during each MJO phase rel-
ative to an average day when MJO is inactive during the growing season. Regions defined
by boxes shown in the top row. A precipitation bar in a given phase with a value of 20%, for
example, indicates that on average precipitation during that phase is 20% greater compared
to an average day in the growing season when the MJO is inactive.

MJO effects on the probability of a region experiencing moderate or extreme precipitation
events during the maize growing season. Top row: number of MJO phases with statisti-
cally significant (p<0.05) precipitation teleconnections (left panel), absolute changes in the
probability of dry (brown line) or wet (blue line) events during an active MJO, averaged
over all grid cells in a latitude (right three panels; event percentiles in panel labels). Bottom
three rows: MJO effects on the probability of exceeding the 75% (light blue), 90% (medium
blue), or 95% (dark blue) threshold for daily precipitation, or for negatively exceeding the
25% (light brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase for
each region shown in the top left plot. A light brown bar (25th percentile event) with a height
of 5% during a given phase, for example, indicates that an event at least as dry as the 25th
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Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

percentile event happens in 30% of the days when the MJO is in that phase. Solid bars are
statistically significant at the 95% confidence level.

MJO effects on the probability of a region experiencing moderate or extreme soil moisture
events during the maize growing season. Top row: number of MJO phases with statistically
significant (p<<0.05) soil moisture teleconnections (left panel), absolute changes in the prob-
ability of dry (brown line) or wet (purple line) events during an active MJO, averaged over
all grid cells in a latitude (right three panels; event percentiles in panel labels). Bottom three
rows: MJO effects on the probability of exceeding the 75% (light purple), 90% (medium
purple), or 95% (dark purple) threshold for daily precipitation, or for negatively exceeding
the 25% (light brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase
for each region shown in the top left plot. A light brown bar (25th percentile event) with a
height of 5% during a given phase, for example, indicates that an event at least as dry as the
25th percentile event happens in 30% of the days when the MJO is in that phase. Solid bars
are statistically significant at the 95% confidence level. e

MIJO effects on the probability of a region experiencing moderate or extreme maximum
temperature events during the maize growing season. Top row: number of MJO phases
with statistically significant (p<0.05) maximum temperature teleconnections (left panel),
absolute changes in the probability of hot (red line) or cool (blue line) events during an
active MJO, averaged over all grid cells in a latitude (right three panels; event percentiles
in panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75%
(light red), 90% (medium red), or 95% (dark red) threshold for daily precipitation, or for
negatively exceeding the 25% (light blue), 10% (medium blue), or 5% (dark blue) threshold
by MJO phase for each region shown in the top left plot. A light blue bar (25th percentile
event) with a height of 5% during a given phase, for example, indicates that an event at least
as cool as the 25th percentile event happens in 30% of the days when the MJO is in that
phase. Solid bars are statistically significant at the 95% confidence level.

MJO effects on the probability of a region experiencing moderate or extreme precipitation
events during the wheat growing season. Top row: number of MJO phases with statisti-
cally significant (p<0.05) precipitation teleconnections (left panel), absolute changes in the
probability of dry (brown line) or wet (blue line) events during an active MJO, averaged
over all grid cells in a latitude (right three panels; event percentiles in panel labels). Bottom
three rows: MJO effects on the probability of exceeding the 75% (light blue), 90% (medium
blue), or 95% (dark blue) threshold for daily precipitation, or for negatively exceeding the
25% (light brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase for
each region shown in the top left plot. A light brown bar (25th percentile event) with a height
of 5% during a given phase, for example, indicates that an event at least as dry as the 25th
percentile event happens in 30% of the days when the MJO is in that phase. Solid bars are
statistically significant at the 95% confidence level.

MIJO effects on the probability of a region experiencing moderate or extreme soil moisture
events during the wheat growing season. Top row: number of MJO phases with statistically
significant (p<0.05) soil moisture teleconnections (left panel), absolute changes in the prob-
ability of dry (brown line) or wet (blue line) events during an active MJO, averaged over all
grid cells in a latitude (right three panels; event percentiles in panel labels). Bottom three
rows: MJO effects on the probability of exceeding the 75% (light purple), 90% (medium
purple), or 95% (dark purple) threshold for daily precipitation, or for negatively exceeding
the 25% (light brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase
for each region shown in the top left plot. A light brown bar (25th percentile event) with a
height of 5% during a given phase, for example, indicates that an event at least as dry as the
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Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

25th percentile event happens in 30% of the days when the MJO is in that phase. Solid bars
are statistically significant at the 95% confidence level. e

MJO effects on the probability of a region experiencing moderate or extreme maximum
temperature events during the wheat growing season. Top row: number of MJO phases
with statistically significant (p<0.05) maximum temperature teleconnections (left panel),
absolute changes in the probability of hot (red line) or cool (blue line) events during an
active MJO, averaged over all grid cells in a latitude (right three panels; event percentiles
in panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75%
(light red), 90% (medium red), or 95% (dark red) threshold for daily precipitation, or for
negatively exceeding the 25% (light blue), 10% (medium blue), or 5% (dark blue) threshold
by MJO phase for each region shown in the top left plot. A light blue bar (25th percentile
event) with a height of 5% during a given phase, for example, indicates that an event at least
as cool as the 25th percentile event happens in 30% of the days when the MJO is in that
phase. Solid bars are statistically significant at the 95% confidence level.

Summary of MJO teleconnections to maize and wheat growing seasons by region. See Fig-
ures 3 - 10 for region locations and quantitative analysis of growing season teleconnections.
42

MJO atmospheric teleconnections in phases 1-4 during Dec-Mar (left column) and Jun-
Sep (right column). Colors and contours indicate standardized 850hPa geopotential height
anomalies during each phase of the MJO. Arrows indicate vertically integrated moisture
flux. User-specified seasonal composites available in IRI Data Library MJO Maproom:
http : //iridl.ldeo.columbia.edu/maproom/Global /Climatologies/MJO_SPH .html

MIJO atmospheric teleconnections in phases 5-8 during Dec-Mar (left column) and Jun-
Sep (right column). Colors and contours indicate standardized 850hPa geopotential height
anomalies during each phase of the MJO. Arrows indicate vertically integrated moisture
flux. User-specified seasonal composites available in IRI Data Library MJO Maproom:
hitp : //iridl.ldeo.columbia.edu/maproom/Global /Climatologies /MJO_SPH .html
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Figure 1. MJO convection anomalies in phases 1-4 during Dec-Mar (left column) and Jun-Sep (right col-
umn). Outgoing longwave radiation (OLR; colors) and 200 hPa vertical velocity potential (contours) for phases
1-4 (left panels) and phases 5-8 (right panels). Negative OLR indicates increased cloud cover, which is often
an indication of increased precipitation. Positive OLR indicates clear sky conditions associated with atmo-
spheric descent and dry conditions. A negative velocity potential at 200 hPa indicates divergence in the upper
atmosphere, which is caused by deep convection in the region, while a positive velocity potential indicates a
stable upper atmosphere. User-specified seasonal composites available in IRI Data Library MJO Maproom:

http : / /iridl.ldeo.columbia.edu/maproom/Global /Climatologies /MJO_SPH .html
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Figure 2. MJO convection anomalies in phases 5-8 during Dec-Mar (left column) and Jun-Sep (right col-
umn). Outgoing longwave radiation (colors) and 200 hPa vertical velocity potential (contours) for phases 1-4
(left panels) and phases 5-8 (right panels). Negative OLR indicates increased cloud cover, which is often an
indication of increased precipitation. Positive OLR indicates clear sky conditions associated with atmospheric
descent and dry conditions. A negative velocity potential at 200 hPa indicates divergence in the upper at-
mosphere, which is caused by deep convection in the region, while a positive velocity potential indicates a
stable upper atmosphere. User-specified seasonal composites available in IRI Data Library MJO Maproom:

http : / /iridl.ldeo.columbia.edu/maproom/Global /Climatologies /MJO_SPH .html
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Figure 3. Relative strength of MJO teleconnections during the maize growing season. Top row: number of
phases with statistically significant (p<0.05) precipitation (left panel) and soil moisture (right panel) telecon-
nections. Bottom three rows: Precipitation (thin blue and brown bars) and soil moisture (thick purple and brown
bars) anomalies during each MJO phase relative to an average day when MJO is inactive during the growing
season. Regions defined by boxes shown in the top row. A precipitation bar in a given phase with a value of 20%,
for example, indicates that on average precipitation during that phase is 20% greater compared to an average day

in the growing season when the MJO is inactive.
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Figure 4. Relative strength of MJO teleconnections during the wheat growing season. Top row: number of
phases with statistically significant (p<0.05) precipitation (left panel) and soil moisture (right panel) telecon-
nections. Bottom three rows: Precipitation (thin blue and brown bars) and soil moisture (thick purple and brown
bars) anomalies during each MJO phase relative to an average day when MJO is inactive during the growing
season. Regions defined by boxes shown in the top row. A precipitation bar in a given phase with a value of 20%,
for example, indicates that on average precipitation during that phase is 20% greater compared to an average day

in the growing season when the MJO is inactive.
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Figure 5. MJO effects on the probability of a region experiencing moderate or extreme precipitation events
during the maize growing season. Top row: number of MJO phases with statistically significant (p<0.05)
precipitation teleconnections (left panel), absolute changes in the probability of dry (brown line) or wet (blue
line) events during an active MJO, averaged over all grid cells in a latitude (right three panels; event percentiles
in panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75% (light blue), 90%
(medium blue), or 95% (dark blue) threshold for daily precipitation, or for negatively exceeding the 25% (light
brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase for each region shown in the top left
plot. A light brown bar (25th percentile event) with a height of 5% during a given phase, for example, indicates
that an event at least as dry as the 25th percentile event happens in 30% of the days when the MJO is in that

phase. Solid bars are statistically significant at the 95% confidence level.
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728 Figure 6. MJO effects on the probability of a region experiencing moderate or extreme soil moisture events

7

N

s during the maize growing season. Top row: number of MJO phases with statistically significant (p<0.05) soil
720 moisture teleconnections (left panel), absolute changes in the probability of dry (brown line) or wet (purple line)
71 events during an active MJO, averaged over all grid cells in a latitude (right three panels; event percentiles in

7

@

> panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75% (light purple), 90%

7!

@

s (medium purple), or 95% (dark purple) threshold for daily precipitation, or for negatively exceeding the 25%

7!

%}

«  (light brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase for each region shown in the

7

@

s top left plot. A light brown bar (25th percentile event) with a height of 5% during a given phase, for example,
7s indicates that an event at least as dry as the 25th percentile event happens in 30% of the days when the MJO is

77 in that phase. Solid bars are statistically significant at the 95% confidence level.
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Figure 7. MJO effects on the probability of a region experiencing moderate or extreme maximum temperature

events during the maize growing season. Top row: number of MJO phases with statistically significant (p<0.05)

maximum temperature teleconnections (left panel), absolute changes in the probability of hot (red line) or cool

(blue line) events during an active MJO, averaged over all grid cells in a latitude (right three panels; event

percentiles in panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75% (light

red), 90% (medium red), or 95% (dark red) threshold for daily precipitation, or for negatively exceeding the

25% (light blue), 10% (medium blue), or 5% (dark blue) threshold by MJO phase for each region shown in the

top left plot. A light blue bar (25th percentile event) with a height of 5% during a given phase, for example,

indicates that an event at least as cool as the 25th percentile event happens in 30% of the days when the MJO is

in that phase. Solid bars are statistically significant at the 95% confidence level.
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748 Figure 8. MJO effects on the probability of a region experiencing moderate or extreme precipitation events
79 during the wheat growing season. Top row: number of MJO phases with statistically significant (p<0.05)
70  precipitation teleconnections (left panel), absolute changes in the probability of dry (brown line) or wet (blue

71 line) events during an active MJO, averaged over all grid cells in a latitude (right three panels; event percentiles

7

a

> in panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75% (light blue), 90%

73 (medium blue), or 95% (dark blue) threshold for daily precipitation, or for negatively exceeding the 25% (light

7!

@

+ brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase for each region shown in the top left

7!

o

s plot. A light brown bar (25th percentile event) with a height of 5% during a given phase, for example, indicates
76 that an event at least as dry as the 25th percentile event happens in 30% of the days when the MJO is in that

77 phase. Solid bars are statistically significant at the 95% confidence level.
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758 Figure 9. MJO effects on the probability of a region experiencing moderate or extreme soil moisture events
79 during the wheat growing season. Top row: number of MJO phases with statistically significant (p<<0.05) soil
70 moisture teleconnections (left panel), absolute changes in the probability of dry (brown line) or wet (blue line)
71 events during an active MJO, averaged over all grid cells in a latitude (right three panels; event percentiles in
762 panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75% (light purple), 90%
763 (medium purple), or 95% (dark purple) threshold for daily precipitation, or for negatively exceeding the 25%
76 (light brown), 10% (medium brown), or 5% (dark brown) threshold by MJO phase for each region shown in the
765 top left plot. A light brown bar (25th percentile event) with a height of 5% during a given phase, for example,
76 indicates that an event at least as dry as the 25th percentile event happens in 30% of the days when the MJO is

77 in that phase. Solid bars are statistically significant at the 95% confidence level.
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768 Figure 10. MJO effects on the probability of a region experiencing moderate or extreme maximum temper-
79 ature events during the wheat growing season. Top row: number of MJO phases with statistically significant
70 (p<0.05) maximum temperature teleconnections (left panel), absolute changes in the probability of hot (red
771 line) or cool (blue line) events during an active MJO, averaged over all grid cells in a latitude (right three panels;
772 event percentiles in panel labels). Bottom three rows: MJO effects on the probability of exceeding the 75%
773 (light red), 90% (medium red), or 95% (dark red) threshold for daily precipitation, or for negatively exceeding
774 the 25% (light blue), 10% (medium blue), or 5% (dark blue) threshold by MJO phase for each region shown in
775 the top left plot. A light blue bar (25th percentile event) with a height of 5% during a given phase, for example,
77 indicates that an event at least as cool as the 25th percentile event happens in 30% of the days when the MJO is

777 in that phase. Solid bars are statistically significant at the 95% confidence level.
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South Africa _ cool and wet

1 2 3 4 5 6 7 8 dry
US Pacific Northwest hot and dry

Maize
growing season

US Great Plains
Southeast South America
5 Argentina
2 Fertile Crescent
E i Southewast Asia
2 § North India
° North China Plain
& Ethiopia
East African Highlands
South Africa

Southeast Australia

778 Figure 11. Summary of MJO teleconnections to maize and wheat growing seasons by region. See Figures 3 -

79 10 for region locations and quantitative analysis of growing season teleconnections.
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Figure 12. MJO atmospheric teleconnections in phases 1-4 during Dec-Mar (left column)
and Jun-Sep (right column). Colors and contours indicate standardized 850hPa geopotential
height anomalies during each phase of the MJO. Arrows indicate vertically integrated mois-
ture flux. User-specified seasonal composites available in IRI Data Library MJO Maproom:

http : ] [iridl.ldeo.columbia.edu/maproom/Global /Climatologies/MJO_SPH .html
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Figure 13. MIJO atmospheric teleconnections in phases 5-8 during Dec-Mar (left column)
and Jun-Sep (right column). Colors and contours indicate standardized 850hPa geopotential
height anomalies during each phase of the MJO. Arrows indicate vertically integrated mois-
ture flux. User-specified seasonal composites available in IRI Data Library MJO Maproom:

http : ] [iridl.ldeo.columbia.edu/maproom/Global /Climatologies/MJO_SPH .html
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