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Key Points:6

• The MJO affects maize yields in regions throughout the tropics and subtropics7

• In dry, hot environments the MJO contributes to crop failures by reducing pre-8

cipitation, decreasing soil moisture, and increasing extreme heat9

• In sufficiently wet environments an MJO-induced decrease in rainfall reduces cloud10

cover, which increases solar radiation and benefits crop yields11
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Abstract12

Understanding what causes weather-related stresses that lead to crop failures is a crit-13

ical step towards stabilizing global food production. While there are many sources of weather-14

related stresses, the 30-60 day Madden-Julian Oscillation (MJO) is the dominant source15

of subseasonal climate variability in the tropics, making it a potential – but as of yet un-16

explored – source of crop failures. Here crop models and observational yield statistics17

are used to assess whether the MJO affects maize yields. We find that the influence of18

the MJO is widespread, affecting crop yields throughout the tropics. In dry, hot envi-19

ronments the MJO can lead to crop failures by reducing precipitation, decreasing soil20

moisture, and increasing extreme heat, while in wetter, cooler environments – where wa-21

ter stress is less common – MJO-forced decreases in rainfall bring increases in solar ra-22

diation that benefits crop yields. These results provide a pathway to develop actionable23

early warnings using subseasonal forecasts.24

1 Introduction25

Crop yields in rainfed cropping systems, which account for > 75% of cropped ar-26

eas globally (Portmann et al., 2010), depend not only on seasonal total rainfall and tem-27

perature, but also on the distribution of that rain and heat within the growing season28

(Prasad et al., 2008). Exposure to extreme heat, even on the timescale of just hours to29

days, can significantly damage crop yields (Schlenker & Roberts, 2009), particularly when30

it occurs during sensitive stages of crop development (Prasad et al., 2008). These extreme31

climate events may be relatively short in duration but they often occur with little warn-32

ing and are spatially widespread enough to affect global-scale food production (Lesk et33

al., 2016). In the coming decades climate change will accelerate the frequency and sever-34

ity of climate extremes (Teixeira et al., 2013), making mitigating the effects they have35

on food production critical.36

Preventing crop failures associated with extreme climate requires understanding37

what causes those conditions in the first place. Climate extremes can have any number38

of dynamical origins, from interannual variability associated with e.g. the El Niño South-39

ern Oscillation (Iizumi et al., 2014; Anderson et al., 2019) to synoptic weather systems40

(Ray et al., 2015). Distinguishing between the two is critical when considering how to41

build a climate-smart food production system. While abiotic stresses arising from weather42

systems may only be predictable up to a week or two in advance, extreme climate con-43

ditions attributable to predictable modes of variability, like the El Niño Southern Os-44

cillation, may be anticipated and acted upon using seasonal climate forecasts (Goddard45

& Dilley, 2005). In between the predictable seasonal and weather time scales, however,46

is a nascent source of climate information for agriculture and food production: the 30-47

60 day Madden Julian Oscillation (MJO).48

As the dominant source of subseasonal climate variability in the tropics (Madden49

& Julian, 1972; Zhang, 2005), the MJO represents a significant opportunity for agricul-50

tural climate services. While MJO activity levels vary from year-to-year, an active MJO51

organizes tropical atmospheric circulation at planetary scales into regions of enhanced52

and suppressed convection. Deep convection associated with the MJO often first appears53

over the Indian Ocean and propagates eastward, reaching the western Pacific about two54

weeks later. The surface expression of the MJO dissipates as it continues east over the55

cold sea surface temperatures in the eastern Pacific before reforming in the tropical At-56

lantic.57

The circumglobal path of the MJO means that it potentially has a far-reaching rel-58

evance to global rainfed agriculture. The MJO influences the West African (Lavender59

& Matthews, 2009; Matthews, 2004), Indian (Joseph et al., 2009; Pai et al., 2011), Asian60

(Lawrence & Webster, 2002), and Australian (Wheeler et al., 2009) monsoons. It affects61

precipitation in East Africa (Pohl & Camberlin, 2006b, 2006a; Berhane & Zaitchik, 2014),62
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southwest Asia (Barlow et al., 2005; Nazemosadat & Ghaedamini, 2010), South Amer-63

ica (Grimm, 2019; Valadão et al., 2017), and southern Mexico (Barlow & Salstein, 2006).64

But to date, despite progress understanding the often-large impacts of the MJO on rain-65

fall, its physical mechanisms, and improvements to MJO forecasts (Pegion et al., 2019),66

the impacts of the MJO on agriculture are still largely unknown. Here, for the first time,67

we analyze whether a single MJO event can affect crop yield statistics and whether the68

effect of the MJO is detectable in historical crop yields. We focus our analysis on maize69

because an active MJO has been shown to affect precipitation, soil moisture, and extreme70

maximum temperatures throughout the tropics during the maize flowering season (Anderson71

et al., accepted), which is when grain crops are particularly sensitive to abiotic stresses72

(Prasad et al., 2008; Barnabás et al., 2008). Our results provide a pathway to develop73

actionable early warnings of climate hazards and their impacts using subseasonal fore-74

casts.75

2 Materials and methods76

2.1 Data77

To identify MJO teleconnections we use daily interpolated station-based temper-78

ature data, and daily precipitation and soil moisture products that blend satellite and79

station data. We use daily soil moisture estimates from the Global Land Evaporation80

Amsterdam Model (GLEAM) v3.2a (1981-2016), which uses satellite-observed surface81

(0-10 cm) soil moisture, vegetation optical depth, reanalysis air-temperatures and a multi-82

source precipitation product to derive surface soil moisture values (Martens et al., 2017).83

Daily precipitation data comes from the Climate Hazards group Infrared Precipitation84

with Stations (CHIRPS; 1981-2016) at 0.25 degrees (Funk et al., 2015). We use values85

of daily maximum and minimum temperature at 2m from the Berkeley Earth dataset86

(1981-2016), which is a one-degree gridded interpolation-based statistical product (Rohde87

et al., 2013), and daily solar insolation from the ranalysis-based NASA-POWER (1983-88

2013) agroclimatology dataset (Stackhouse et al., 2015). To construct weather forcing89

for the DSSAT crop model we use data from the common period of 1983-2013.90

We use observational crop statistics at the national and subnational scale to esti-91

mate the effects of the MJO on regional crop yields. Subnational crop statistics were down-92

loaded for India from the Directorate of Economics and Statistics (https://eands.dacnet.nic.in/);93

for Mexico from the INEGI Information Databank (http://www3.inegi.org.mx/sistemas/biinegi/);94

for Brazil we use first-season maize only from the Brazilian Companhia Nacional de Abastec-95

imento (CONAB; http://www.conab.gov.br/index.php); data for the rest of Central Amer-96

ica, West Africa and East Africa was only available at a national scale and was down-97

loaded from the Food and Agriculture Organization FAOSTAT database (http://www.fao.org/faostat/en/).98

To calculate crop yield anomalies we first remove the long-term trend using a low-99

pass Gaussian filter with a kernel density of three years, which is similar to a nine-year100

running mean. Deviations from this ”expected yield” are absolute yield anomalies. We101

calculate percent yield anomalies as the absolute yield anomaly divided by the expected102

yield for each subnational district. Regional yield anomalies are calculated by using ob-103

served harvested areas to calculate regional percent yield anomalies. As a sensitivity ex-104

periment, we recalculated the results based on yield anomalies derived from a five-year105

running mean but found little difference.106

2.2 Daily climate anomalies107

We estimate the impact of harmful increases in maximum temperature around flow-108

ering by counting degree-days above a critical temperature threshold (Tc), which in this109

case is 29◦ C for maize (Schlenker & Roberts, 2009). Our temperature threshold is cho-110

sen to identify detrimental, not necessarily lethal, temperatures (Schlenker & Roberts,111
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2009; Sánchez et al., 2014). During the three months prior to harvest, which is defined112

for each point using the Sacks et al. (2010) data, the number of ‘extreme degree days’113

(EDD) were then calculated as follows:114

EDD =

n∑
i=1

max(0, Tmax,i − Tc)

where Tmax,i is the maximum temperature on the ith day of the flowering period (that115

lasts n days). We use an average of daily EDDs across all years to define the climatol-116

ogy of EDDs.117

For the non-derived variables of soil moisture and precipitation, we define the cli-118

matology using the first three harmonics. Daily anomalies are similarly calculated as de-119

partures from this daily climatology and calculated for MJO events during the three months120

prior to harvest .121

2.3 MJO event identification122

To identify MJO teleconnections, we create composites of all days (1981-2016) in123

which the Wheeler-Hendon Realtime Multivariate MJO (RMM) indices, which measure124

MJO activity (Wheeler & Hendon, 2004), have an amplitude of greater than one stan-125

dard deviation. We mask out all areas in which there are fewer than 1000 observations126

in the climate dataset or where maize is not cultivated. Measuring MJO teleconnections127

is straightforward in Southwest Mexico and Central America, Northeast Brazil, and East128

Africa, where the MJO influences crop growing conditions is directly related to the east-129

ward propagating convection anomalies. In each of these areas we plot composites of dam-130

aging maximum temperatures and soil moisture anomalies by MJO phase in Figure 2131

below. MJO teleconnections in West Africa and India, on the other hand, are at least132

partly the result of Rossby and Kelvin waves that propagate away from the main enve-133

lope of deep convection associated with the MJO. In West Africa teleconnections are pri-134

marily a response to westward propagating Rossby waves generated by MJO-related con-135

vection (Vigaud & Giannini, 2019; Lavender & Matthews, 2009; Matthews, 2004). Over136

India in the summer, the eastward propagating MJO acquires a northward propagating137

component that reaches the 10-25N region up to two weeks later (Lawrence & Webster,138

2002; Wang et al., 2018).139

To capture the integrated effect of these teleconnections we plot the cumulative sum140

of soil moisture and extreme degree-day anomalies during ten-day windows correspond-141

ing to the expected timing of teleconnections for each phase: days 0-10 and 5-15 for West142

Africa and India, respectively. We choose the timing of the lag based on previous liter-143

ature demonstrating the time it takes for MJO-forced waves to propagate to our points144

in West Africa (Lavender & Matthews, 2009; Matthews, 2004; Vigaud & Giannini, 2019)145

and India (Lawrence & Webster, 2002). For all other regions we show instantaneous tele-146

connections.147

2.4 DSSAT model simulation148

To simulate MJO teleconnections to maize yields we use the DSSAT crop model149

(Hoogenboom et al., 2019; J. W. Jones et al., 2003; C. A. Jones, 1986), run at specific150

spatial locations. We choose locations that (1) are maize production regions and (2) in151

which the MJO-teleconnections at a single point is representative of the average MJO152

teleconnection to the entire region as a whole (Fig. 3). This ensures continuity between153

our point-based simulation of yields and regional analysis of climate teleconnections. For154

each chosen location, we performed a literature review to identify an appropriate cul-155

tivar and parameterization for the model (Jagtap et al., 1999; Justino et al., 2013; Ba-156

bel & Turyatunga, 2015; Royce, 2002). Parameters from regionally-relevant field trials157

were used where available (SI Table 1). Where no such data was available, as was the158
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case in Mexico, we relied on expert elicitation. We next identify suitable soils in the WISE159

soils database, and calibrate the model planting date based on observational yield statis-160

tics. For each location we use three planting dates to simulate variable sowing decisions,161

and choose two soil profiles to represent different likely soil conditions (SI Table 1).162

We force the DSSAT crop model with observed daily precipitation, incoming so-163

lar radiation, and maximum and minimum temperature to create series of baseline crop164

yield simulations in each location. We next create a weather forcing ensemble to mea-165

sure the marginal effect of an MJO event on crop yield anomalies. We use the same MJO166

events from our composite analysis described in Sect 2.3 to create the ensemble. For each167

day in which the MJO was active in a given phase during crop flowering, we select the168

maximum temperature, minimum temperature, solar radiation and precipitation for that169

day and the following two weeks to account for propagating waves and persistent tele-170

connections. To estimate the marginal effect of one MJO event on crop yields, we over-171

write two weeks of observed weather in the DSSAT forcing file around the time of flow-172

ering (as determined in the DSSAT calibration runs) with the ”MJO event weather” and173

re-run DSSAT with the perturbed weather forcing. For the purposes of generating a large174

ensemble, each historical MJO event in a particular phase is inserted at the flowering time,175

regardless of when it occurred in the observed record. We then repeat this process for176

all possible combinations of MJO events, years, three planting dates, and two soils to pro-177

duce an ensemble of size (# events)x(# years)x(# planting dates)x(# soils) for each phase178

of the MJO. This creates an ensemble of over 300,000 yield anomalies for each region (>40,000179

per phase per region). Finally, we calculate the marginal effect of each MJO event by180

differencing the DSSAT crop yield with the added ”MJO event weather” from the DSSAT181

crop yield forced by observed weather without the added event.182

To identify the effect of each MJO phase on crop yields, we use multi-linear regres-183

sion to regress the MJO phase of each forcing event onto the calculated crop yield anoma-184

lies while controlling for the year into which that event was inserted:185

δYij = Phi + Y rj (1)

where δYij is the crop yield anomaly in year j forced by MJO event i, Y rj is a fixed186

effect for each year to remove interannual variability, and Phi is a series of dummy vari-187

ables corresponding to the phase of the MJO during each event i. In this way we both188

remove interannual variability and isolate the average expected influence of an individ-189

ual MJO event on crop yield anomalies.190

2.5 Effect of the MJO in observational crop statistics191

Our regression onto simulated yield anomalies can provide us with an estimate of192

the potential influence of any single MJO event that begins in a particular phase on crop193

yields. But it does not tell us whether these effects are present in observational yield statis-194

tics. Because we cannot isolate the effect of individual MJO phases in the observational195

record, as we did with our DSSAT simulations, we instead take a counterfactual approach196

and ask ”do bad yield years and good yield years show a difference in the frequency of197

events in particular MJO phases?”. To answer this question we use both our DSSAT en-198

semble and observational records.199

In our DSSAT ensemble for each location, we identify the highest and lowest 10,000200

yield anomalies, which is roughly the top and bottom 2.5% of the distribution, and record201

the Realtime Multivariate MJO (RMM) index values associated with each MJO event202

used to produce those yield anomalies in the DSSAT ensemble. We then create two prob-203

ability density functions of MJO activity in an RMM diagram, one for the events asso-204

ciated with the ”good years” and one for the events associated with the ”bad years”. The205

difference of these two distributions indicates the relative frequency of MJO phases that206
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produced good yields and those that lead to bad yields. If there is no difference between207

the two distributions, then the MJO has no discernible influence. If there is a difference,208

however, then the relative frequencies can be compared to our climate analysis to check209

for consistency.210

We repeat this process with observational yields by selecting subnational or national211

units within each region, and aggregating yields into a single regional value. We next iden-212

tify the high and low terciles of crop yields in the region, and for each year we identify213

the daily MJO phases and amplitudes during the maize growing season (Jun - Sep for214

India, May-Sep for Southwest Mexico, May-Aug for West Africa, Apr-Sep for East Africa,215

and both Feb-May and Sep-Dec for cropping seasons in Northeast Brazil). We again take216

the difference between the distribution of daily MJO RMM indices during high and low217

yield terciles to calculate the difference in MJO activity between good and bad years.218

3 Results219

3.1 MJO Teleconnections220

Dry and hot teleconnections tend to persist for around 15 days (Fig. 1), which is221

sufficient to depress seasonal total maize yields (Schlenker & Roberts, 2009). The temperature-222

stress pathway is likely to be largest in Northeast Brazil, West Africa, and India where223

teleconnections to extreme temperatures are strongest.224

Using a large ensemble of modeled crop yields, we separate the effect of the MJO225

from that of both seasonal variability (e.g. the El Niño Southern Oscillation) and ran-226

dom weather. We find that the MJO affects maize yields throughout the tropics, but that227

its influence is stronger in Northeast Brazil and India than in other regions studied (Fig.228

2). Each MJO event, of which there may be multiple during a given growing season, af-229

fects maize yields by ∼0.5 - 1%.230

3.2 Regional dynamics231

MJO impacts on Southwest Mexico and Northeast Brazil are phased similarly. Large-232

scale descent in phases 3-6 suppress convection (Fig. 1), which, after a few days, dries233

out the soil and leads to increased maximum air temperatures. During phases 7-2, on234

the other hand, westerly winds advect moisture into Southwest Mexico (Barlow & Sal-235

stein, 2006) and large-scale convection over Northeast Brazil leads to precipitation (Valadão236

et al., 2017), which wets the soils and cools maximum air temperatures.237

Despite the similarity of the MJO teleconnections to the climate in these two re-238

gions, the effect on crop yields is quite different due to differing growing conditions. Our239

modeled point in Northeast Brazil is arid and hot, which means that maize is regularly240

exposed to heat stress and drought. Our point in Southwest Mexico, on the other hand,241

is relatively wet and cool, such that maize is exposed to less extreme temperatures (Fig.242

1) and is water-stressed much less often in the DSSAT simulations (SI Figure 1). Wet,243

cool conditions in Northeast Brazil during phases 7-2, therefore, generally increase crop244

yields, while the hot, dry conditions in phases 3-6 decrease crop yields (Fig. 2). In South-245

west Mexico, clear skies bring an increase in solar radiation that tends to improve yields,246

while increased precipitation decreases solar radiation and leads to lower crop yields on247

average.248

An MJO event being sufficient to affect modeled crop yields doesn’t demonstrate249

that the effect is necessarily seen in observed yields. After all, the MJO is only one of250

many factors that affect crop yields in these regions. To test whether the effect of the251

MJO is present in observational statistics we analyzed whether the frequency or inten-252

sity of the MJO during the growing season systematically differs during good and poor253

harvest years (see Methods).254
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Figure 1. Average precipitation, soil moisture, and extreme degree-day anomalies during days

with an active MJO for each phase (1-8; y-axis) from 15 days before an event occurs to 15 days

after an event occurs (x-axis). Values are averaged over each region shown by the boxed area in

the top panel, which shows maize growing locations. Propagation of the MJO is indicated by the

slope of anomalies in the phase-lag plot.
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Figure 2. Average soil moisture, extreme degree-day, solar radiation, and modeled maize yield

anomalies associated with an active MJO event for each phase (x-axis) in each region. Anomalies

of incident solar radiation are for point data only. Each region is shown in black boxes while

each point used to simulate crop yields within the region is shown in red (top panel). Thick bars

in each panel indicate regional-averages, while thin bars indicate anomalies at the point used

to simulate crop yields. Numbers in each panel indicate regional climatologies around flower-

ing for volumetric soil moisture (in m3/m3), extreme degree days, and incident solar radiation

(MJ/m2/day), while numbers in parentheses indicate climatologies at each point.
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In Northeast Brazil, years with poor maize yields are associated with increased MJO255

activity in phases 2-5 during the growing season, while years with good maize yields are256

associated with increased MJO activity in phases 6-1 (Fig. 3). The frequency of MJO257

events in good and bad years based on observational statistics match results based on258

our DSSAT model ensemble to first order (SI Fig. 2), although there are differences be-259

tween the two distributions of MJO activity. These results are consistent with our cli-260

mate analysis for the region, in which dry, hot MJO teleconnections lower maize yields261

while wet, cool MJO teleconnections improve maize yields (Fig. 2).262

In Southwestern Mexico the observational ensemble indicate that years with poor263

crop yields are associated with phases 7-2 (Fig. 3), although the DSSAT ensemble in-264

dicates that poor crop yields are associated with MJO phases 6-8 (Fig. 2 and SI Fig 2).265

The discrepancy between modeled and observed results may be due to the difference be-266

tween the area-averaged statistics and the DSSAT point estimate, or it may reflect a dis-267

crepancy between the modeled and historical cropping practices in the region. Further268

research is needed to more precisely characterize how MJO-related variations in the grow-269

ing season climate of Southwest Mexico translates into variations in crop yields.270

The MJO affects maize yields in West Africa primarily via a remote response to271

MJO activity in the Indian Ocean. When the MJO enhances convection in the Indian272

Ocean and suppresses convection in the West Pacific warm pool (phases 1-2) it gener-273

ates an atmospheric equatorial Kelvin wave that travels east and equatorial Rossby waves274

that travel west, which reach West Africa about a week later, destabilizing the atmospheric275

column, and enhancing rainfall in the region (Lavender & Matthews, 2009; Matthews,276

2004). Accordingly, phases one and two are characterized by increased precipitation (Fig.277

1), wet soils, an absence of high temperatures and above expected crop yields (Fig. 2).278

Phases 3-6 are associated with dry, hot conditions that lower modeled crop yields. Phase279

four is most damaging to crop yields in West Africa, possibly because as the MJO tends280

to propagate from phase 4-8, teleconnections are consistently dry and hot, prolonging281

the time before rain provides relief to the crop. These results are consistent with good282

harvests in the observational statistics being associated with an increase in MJO phases283

7-2, while poor harvests are associated with increased activity in MJO phases 3-6 (Fig.284

3). Similarly, the good yielding years in the model ensemble are associated with an in-285

crease in the frequency of phases 1-2 and a decrease in the frequency of phases 3-4, al-286

though the effect of phases 5-8 are muted in the modeled results as compared to the ob-287

servational statistics.288

In the East African highlands, precipitation anomalies are controlled by the atmo-289

spheric stability conditions imposed by the MJO (Pohl & Camberlin, 2006b, 2006a; Berhane290

& Zaitchik, 2014). During phases 2-5 large-scale deep convection is responsible for wet,291

cool conditions. Similar to Southwest Mexico, however, the growing conditions at our292

modeled point in Uganda are cool and wet, such that increased precipitation decreases293

incoming solar radiation and decreases modeled maize yields (Fig. 2). These DSSAT re-294

sults, however, must be interpreted with the understanding that many regions – but par-295

ticularly East Africa – are a complex mosaic of agro-climates and soils, which will re-296

sult in a non-homogenous crop yield response to a homogenous MJO-forced climate anomaly.297

In observational crop yield statistics, differences in the frequency of MJO phases in good298

vs poor yield years are noisy, perhaps due to the lack of available, reliable, subnational299

crop yield data or due to the complex crop growing environment in the region. While300

there is reasonable agreement between the modeled maize yields and observed yields, no301

strong conclusions about observed East African maize yields can be drawn based on Fig-302

ure 3.303

In India, precipitation anomalies are associated with meridionally propagating Rossby304

waves triggered by the eastward-moving deep-convective anomalies of the MJO (Lawrence305

& Webster, 2002). Large-scale convective anomalies over the Indian Ocean propagate306

northward over the course of 1-2 weeks into the 15-25N region (Lawrence & Webster,307
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Figure 3. Differences between MJO activity in good yield and poor yield years as measured

by the normalized, 2-dimensional probability density functions of the RMM indices during the

months prior to harvest. Subnational or national units included in each region for observational

statistics are shown in blue in the top panel. Good yield years are identified as the top-tercile

of regional yields, while poor yield years are bottom-tercile years. The difference between the

distributions of RMM indices in good yield and poor yield years is statistically significant at the

5% level in all cases.
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2002), where most maize is cultivated in India. Increased deep convection over the In-308

dian ocean in phases 1-4 leads to increased precipitation 1-2 weeks later, which leads to309

wet soils and, after a few days, cool air temperatures over the maize growing regions of310

India (Fig. 1). Accordingly, phases 1-4 lead to increased maize yields in model simula-311

tions (Fig. 2) and increased MJO activity in phases 1-4 is associated with years of good312

maize harvests in both the observational data and model simulations (Fig. 3). Phases313

5-8, which are associated with suppressed convection over the Indian Ocean, lead to dry,314

hot conditions (Joseph et al., 2009; Moron et al., 2012; Pai et al., 2011) and below-expected315

maize yields (Figs. 2 and 3).316

4 Discussion317

A historical example of when the MJO likely affected crop yield anomalies was the318

2002 monsoon season in India. At the time, the 2002 drought was among the worst in319

over a century despite seasonal forecasts for normal monsoon rainfall (Bhat, 2006). The320

drought in July, when the MJO was strongly active in phases 6-8 (SI Fig. 3), had a large321

contribution from intraseasonal disturbances (Bhat, 2006; Kripalani et al., 2004), although322

a developing El Niño likely played a role in the drought as well via cross-timescale in-323

teractions (Muñoz et al., 2015). The spatial pattern of maize yield anomalies in 2002 matches324

well what would be expected from MJO-forced extreme heat in phases 6-8 (SI Fig. 3).325

Reduced maize yields in India following MJO activity in phases 6-8 is furthermore con-326

sistent with both our observational and modeled analyses (Figs. 1-3). The 2002 drought327

illustrates how intraseasonal forcing may play a role in even the most intense crop fail-328

ures.329

Our results more generally demonstrate that the MJO affects crop yield variations330

throughout the tropics. In dry, hot environments the MJO forces crop failures by reduc-331

ing precipitation, decreasing soil moisture, and increasing extreme heat while in wetter,332

cooler environments – where water stress is less common – MJO-forced decreases in rain-333

fall bring an increase in solar radiation that benefits crop yields. We find that each MJO334

event affects final crop yields by ∼0.5 - 1% of expected yields, although multiple events335

may occur in a single season. For reference, the 2002 drought in India led to the worst336

maize growing season in recent history, with national yields reduced by around 17% com-337

pared to the previous year (FAO, 2009). Average MJO reductions in crop yields on the338

order of one percent per event, therefore, are non-negligible contributions to crop fail-339

ures even measured against the most devastating yield losses.340

But a number of open questions remain. Our results indicate that one path by which341

the MJO may affect final crop yields is through an increased frequency of some MJO phases342

relative to others. It is also possible, however, that a nonlinear crop yield response to343

excess heat could rectify onto the end-of-season crop yields even when the MJO prop-344

agates through both cool phases that improve yields and hot phases that decrease yields.345

Further research is needed to fully understand the mechanisms by which the MJO af-346

fects crop yields.347

The ability to attribute crop failures to the MJO provides a new incentive to glean348

operational value from our rapidly improving understanding of subseasonal climate. Cur-349

rent forecast models can now forecast the MJO with high skill up to 4 weeks in advance350

(Vitart, 2017) and – in some of the regions analyzed – subseasonal forecasts of precip-351

itation demonstrate skill at lead times of up to three weeks (Pegion et al., 2019). Such352

forecasts could be used to extend weather forecasts to inform agricultural decisions. Do-353

ing so would represent a significant advance for climate-smart agriculture by providing354

users with a continuum of actionable forecasts from the weather to seasonal time scales.355

Using subseasonal forecasts to anticipate false starts to the rainy season, for example,356

could help inform the timing of crop planting to prevent crop failures.357
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Owing to the effects of the MJO on climate extremes during grain crop flowering358

seasons on virtually every continent (Anderson et al., accepted), there is good reason to359

believe that the MJO has widespread relevance to global agriculture. Better understand-360

ing how the MJO affects crop yields may lead to significant advances in monitoring and361

predicting food production shortfalls.362
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Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress388

on reproductive processes in cereals. Plant, cell & environment , 31 (1), 11–38.389

Berhane, F., & Zaitchik, B. (2014). Modulation of daily precipitation over east africa390

by the madden–julian oscillation. Journal of Climate, 27 (15), 6016–6034.391

Bhat, G. S. (2006). The indian drought of 2002—a sub-seasonal phenomenon?392

Quarterly Journal of the Royal Meteorological Society: A journal of the at-393

mospheric sciences, applied meteorology and physical oceanography , 132 (621),394

2583–2602.395

FAO. (2009). Food and agriculture organization statistical databases.396

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., . . . oth-397

ers (2015). The climate hazards infrared precipitation with stations—a new398

environmental record for monitoring extremes. Scientific data, 2 , 150066.399

Goddard, L., & Dilley, M. (2005). El Niño: catastrophe or opportunity. Journal of400

Climate, 18 (5), 651–665.401

Grimm, A. M. (2019). Madden–julian oscillation impacts on south american summer402

monsoon season: precipitation anomalies, extreme events, teleconnections, and403

role in the mjo cycle. Climate Dynamics, 1–26.404

Hoogenboom, G., Porter, C., Shelia, V., Boote, K., Singh, U., White, J., . . . Jones,405

J. (2019). Decision support system for agrotechnology transfer (dssat) version406

4.7.5 (Tech. Rep.). Gainesville, Florida, USA.: DSSAT Foundation.407

Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., . . .408

–12–



manuscript submitted to Geophysical Research Letters

Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global409

yields of major crops. Nature communications, 5 .410

Jagtap, S., Abamu, F., & Kling, J. (1999). Long-term assessment of nitrogen and411

variety technologies on attainable maize yields in Nigeria using CERES-maize.412

Agricultural systems, 60 (2), 77–86.413

Jones, C. A. (1986). Ceres-maize; a simulation model of maize growth and develop-414

ment (Nos. 04; SB91. M2, J6.).415

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt,416

L., . . . Ritchie, J. T. (2003). The dssat cropping system model. European417

journal of agronomy , 18 (3-4), 235–265.418

Joseph, S., Sahai, A., & Goswami, B. (2009). Eastward propagating MJO during bo-419

real summer and indian monsoon droughts. Climate Dynamics, 32 (7-8), 1139–420

1153.421
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