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Appendix S1: Model Methodology 34	
  
 35	
  

S1.1 M3 distribution of crop harvested areas and yields: 36	
  

In	
  each	
  grid	
  cell	
  that	
  had	
  agricultural	
  inventory	
  data	
  the	
  map	
  of	
  crop	
  area	
  was	
  calculated	
  as	
  37	
  

follows:	
  	
   38	
  

!"#$%! = !"#$%&'()!
!"#$!

!"#$%&'(!
     (S1) 39	
  

Where   !"#$%! is the harvested area of a specific crop in pixel i, !"#!"#$%&! is the fraction of pixel i 40	
  

designated as cropland, !"#$! is the harvested area of a specific crop in statistical reporting unit k and 41	
  

!"#$%&'(! is the amount of cropland in statistical reporting unit k. Yield was distributed uniformly 42	
  

across each grid cell as equivalent to the yield reported in the statistical reporting unit as a whole. 43	
  

 44	
  

S1.2 MIRCA distribution of harvested area: 45	
  

MIRCA primarily reconciles the differences between Siebert et al., 2007 dataset of areas 46	
  

equipped for irrigation (AEI), Cropland extent of Ramankutty et al., 2008, and the harvested area (HA) 47	
  

maps of the M3 dataset (Monfreda et al., 2008) to provide a monthly cropping map for irrigated and 48	
  

rainfed crops. The priorities used to reconcile inconsistencies between the datasets is outlined in Table 49	
  

A1.  MIRCA first produces a Condensed Crop Calendar of harvested area for each sub-crop c and SRU k 50	
  

(HAcccc,k). A sub-crop is used to represent multi-cropping systems or different sub-groups of a crop that 51	
  

grow at different points in the year. For a complete description of how the Condensed Cropping Calendar 52	
  

is produced, see Portman et al., 2008.  53	
  

 54	
  

Table S1: Priorities in distributing the Condensed Crop Calendars to monthly growing area grids 55	
  

Priority Dataset Goal 

1 Area	
  equipped	
  for	
  irrigation	
  
(Siebert	
  et	
  al.,	
  2007)	
  
	
  

In	
  each	
  month	
  and	
  grid	
  cell	
  the	
  sum	
  of	
  irrigated	
  crop-­‐specific	
  
areas	
  is	
  lower	
  than	
  or	
  equal	
  to	
  the	
  area	
  equipped	
  for	
  irrigation	
  

2 Cropland	
  extent	
  
(Ramankutty	
  et	
  al.,	
  2008)	
  
	
  

In	
  each	
  grid	
  cell	
  and	
  month	
  the	
  sum	
  of	
  crop-­‐specific	
  irrigated	
  
and	
  rainfed	
  areas	
  is	
  lower	
  than	
  or	
  equal	
  to	
  the	
  cropland	
  extent	
  

3 Harvested	
  crop	
  area	
  
(Monfreda	
  et	
  al.,	
  2008)	
  

In	
  each	
  grid	
  cell	
  and	
  for	
  each	
  crop	
  class	
  the	
  annual	
  sum	
  of	
  the	
  
irrigated	
  and	
  rainfed	
  harvested	
  crop	
  area	
  is	
  equal	
  to	
  the	
  total	
  
harvested	
  area	
  of	
  the	
  specific	
  crop	
  

 56	
  

 57	
  

Irrigated Crops: 58	
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The MIRCA process is a production system specific cell-wise approach to disaggregating 59	
  

harvested area by month. Area equipped for irrigation and cropland extent both include fallow 60	
  

land in their definition, so these classes need not be used completely so long as the annual 61	
  

harvested area is disaggregated and designated as either rainfed or irrigated. Area equipped for 62	
  

irrigation is prioritized over cropland extent and harvested area in the following process: 63	
  

 64	
  

1. Calculate the irrigated harvested area (IHA) for subcrop c in cell i of month m 65	
  

             !"#!,!,! = !"!,!,!×  !"#$!,!
∑!"#$%&'  !"#$%!,!

     (S2) 66	
  

Where !"#$!,! is the fraction of pixel i equipped for irrigation in month m 67	
  

 68	
  

2. Assign irrigated harvested areas to the monthly minimum of area equipped for irrigation and 69	
  

harvested area for subcrop c in cell i of month m 70	
  

!"  !"# > 0  !"#  !"#$%&'()*+,'+ > 0  !"#  !"!,!,!, > 0,     !"#!,!,! =   min  (!"#!,!,! ,!"!,!,!)    (S3) 71	
  

 72	
  

3. If there still exists HAccc!"   distribute irrigated growing areas to those cells that have cropland extent 73	
  

greater than zero and that are equipped for irrigation even if no !"!,!,! exists 74	
  

!"  !"# > 0  !"#  !"#$%&'()*+,'+ > 0  ,  !"#!,!,! = !"#$%&%&'  HAccc!"  (S4) 75	
  

 76	
  

4. If there still exists HAcccc,k, distribute it to areas within cells that are equipped for irrigation, even if 77	
  

the cropland extent (and therefore !"!,!,!,) is zero. 78	
  

!"  !"# > 0  !"#  !"#$%&'()*+,'+ = 0,      !"#!,!,! = !"#$%&%&'  HAccc!"  (S5) 79	
  

 80	
  

Rainfed Crops: 81	
  

Following the distribution of irrigated crop areas, rainfed crops were distributed. Rainfed annual 82	
  

crops were treated differently than rainfed permanent crops. Annual crops were allowed to grow on areas 83	
  

equipped for irrigation so long as they were available, while permanent crops were not. 84	
  

 85	
  

5. Calculate the rainfed harvested area for crop c in pixel i of month m (!"#!,!,!) by distributing 86	
  

rainfed crops to areas in which available cropland extent exceeds available area equipped for 87	
  

irrigation: 88	
  

!"  !"#$%&'()*+,'+ > !"#,     !"#!,!,! = min(!"!,!,!  ,!"#$%&'()*+,'+!  )   (S6) 89	
  

 90	
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6. If there still exists HAcccc,k, expand suitable areas in cells with more cropland extent than area 91	
  

equipped for irrigation to 95% of the cell, leaving room to account for infrastructure. 92	
  

!"  !"#$%&'()*+,'+ > !"#,     !"#!,!,!,!"#$% =   min(!"!,!,!  , (0.95 ∗ !"#$!))  (S7) 93	
  

 94	
  

7. If there still exists HAcccc,k, expand suitable areas in cells with either cropland extent or area 95	
  

equipped for irrigation to 95% of the cell, leaving room to account for infrastructure. 96	
  

!"  !"#$%&'()*+,'+ > 0    !"    !"# > 0,      !"#!,!,!,!"#$% =   min(!"!,!,!  , (0.95 ∗ !"#$!  )) (S8) 97	
  

 98	
  

The total harvested area of all rainfed and irrigated crops is therefore the sum of the IHA calculated in 99	
  

steps A2-A5 and the RHA calculated in steps A6-A8. 100	
  

 101	
  

S1.3 SPAM harvested area and yield distribution 102	
  

The SPAM model distributes available crop statistics using a cross-entropy approach that 103	
  

incorporates ancillary data on crop price, market access, biophysical suitability and expert 104	
  

elicitation. Shannon (1948) first introduced the concept of information entropy to measure the 105	
  

uncertainty of expected information in a system. Jaynes (1957) adopted the concept of 106	
  

information entropy and further proposed the principle of maximum entropy in statistical 107	
  

inference: the least informative probability distribution can be found by maximizing the entropy. 108	
  

In other words, without information to the contrary, all possible states of a system are equally 109	
  

likely. With respect to the concept’s application to SPAM, Golan, Judge and Miller (1996) 110	
  

presents the formation of maximum entropy (or minimum cross-entropy) principle for use in 111	
  

parameter estimation problems. 112	
  

  113	
  

Harvested Area calculation 114	
  

SPAM distributes statistical information from allocation unit (e.g a country or a province) 115	
  

by using the cropping intensity of crop j in production system l to convert the reported harvested 116	
  

areas (!"!,!) to physical areas (!"#$%"&'!") as: 117	
  

 118	
  

!"#$%"&'!" =
!"!"

!"#$$%&'(&)*&+%),!"
      ∀!, !       (S9) 119	
  

 120	
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SPAM next defines the area allocated to pixel i for crop j in production system l (!!"#) using the 121	
  

share of the total physical area for crop j in production system l (!ℎ!"#!") and the physical area 122	
  

(!"#$%"&'!") as: 123	
  

 124	
  

!!"# = !"#$%"&'!"×!ℎ!"#!"×!!"#         ∀!, !, !        (S10) 125	
  

 126	
  

The minimum cross-entropy approach employed by the SPAM model calculates the area 127	
  

shares for crop j of pixel i in production system l as: 128	
  

 129	
  

min
!!"#

  !" !!"# ,!!"# = !!"# ln !!"# −  !!! !!"# ln !!"#   !!!    (S11) 130	
  

 131	
  
Subject to the following constraints: 132	
  

!!"# = 1          ∀!, !,!∈! !         (S12) 133	
  

!"#$%"&'!"×!ℎ!"#!"×!! !!"#   ≤ !"#$%&'()*+,'+!       ∀!      (S13) 134	
  

!"#$%"&'!"×!ℎ!"#!"×!!"#   ≤ !"#$%&'()*+,-",)!"#         ∀!, !, !      (S14) 135	
  

!"#$%"&'!"×!ℎ!"#!"×!!∈! !!"# = !"#$%&'(%)*!"         ∀!, !   ∈ !   (S15) 136	
  

!"#$%"&'!"×!ℎ!"#!"×!∈! !!"# ≤ !"#!         ∀!      (S16) 137	
  

1 ≥ !!"# ≥ 0      ∀!, !, !          (S17) 138	
  

 139	
  

Where l may be irrigated, rainfed high-input, rainfed subsistence or rainfed low input. 140	
  

CroplandExtenti is the total extent of cropland for pixel i and !"#$%&'()*+,-",)!"#    is the area 141	
  

suitable for crop j at input level l in pixel i. !"#$%!"#$%&!"    is the crop area statistics for crop j 142	
  

in subnational SRU k. AEIi  is the area equipped for irrigation in pixel i. J is a set of commodities 143	
  

for which sub-national production statistics exist and L is a set of commodities within pixel i that 144	
  

are irrigated.  !!"# represents the prior estimate of area shares for crop j at input level l in pixel i.  145	
  

The prior is developed using expert elicitation where available and elsewhere is 146	
  

calculated based on potential unit revenue, !"#!"#. 147	
  

 148	
  

!!"!"# = !ℎ!"#!"×!"#$%!×!""#$$!"×!"#$%&'()#('*!"#     (S18) 149	
  

 150	
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Where !"#$%! is the price of crop j !""#$$!"is a measure of the physical accessibility of the 151	
  

market for crop j from pixel i. !"#$%&'()#('*!"# is the agro-climatically suitable yield for crop j 152	
  

at input level l in pixel i.  Then the prior allocation of crop area is estimated using irrigated area 153	
  

and cropland as follows. 154	
  

 155	
  

!"#$"%"&'!"# = !"#!×
!"#!"!
!"#!"#!

      ∀!, !,      ∀! = !""!#$%&'     (S19) 156	
  

!"#$"%"&'!"# = !"#$%&'()*+,'+! − !"#! − !"#$"%"&'!",!"#!$!%&'(& ×
!"#!"#
!"#!"#!!

      ∀!, !,      ∀! =157	
  

!"#$%&'        (S20) 158	
  

 159	
  

In the case of subsistence farming, the revenue measure is replaced by a measure of population 160	
  

density. The subsistence part of the sub-national crop area is then pre-allocated using rural 161	
  

population density as a weight. 162	
  

 163	
  

!"#$"%"&'!",!"#!$!%&'!" = !"#$%&'(%)*!"×!"#$"%&!"×
!"#!
!"#!!∈!

      ∀!, !, !=subsistence   (S21) 164	
  

 165	
  

After this pre-allocation, the prior is calculated by normalizing the allocated areas over the whole 166	
  

allocation unit: 167	
  

 168	
  

!!"# =
!"#$"%"&'!"#
!"#$"%"&'!"#!

        ∀!, !, !            (S22) 169	
  

 170	
  

 171	
  

Yield Calculation 172	
  

 The calculation of yield is based on the statistical yield information for crop j within production 173	
  

system l for each SRU k. First, the average potential yield, !!", is calculated as: 174	
  

 175	
  

!!"# =
!"#$%&#'#$(!"#×!!"#!

!!"#!
    ∀!         (S23) 176	
  

!!"# =
!"#$%&#'#$(!"#×!"#$%&'()!"#

!!"#
         (S24) 177	
  

 178	
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Where !"#$%&'()!"# is the statistical yield reported for crop j in production system l within SRU 179	
  

k. Then the production of crop j in production system l, and pixel i, Prodijl , could be calculated 180	
  

as the following:  181	
  

 182	
  

!"#$!"# = !!"#×!"#$%&'(&)*&+%),!" ×!!"#       (S25) 183	
  

 184	
  

S1.4 GAEZ distribution of harvested area and yield: 185	
  

The GAEZ model distributes available statistical data using an iterative rebalancing 186	
  

procedure that converges to the same answer as the cross entropy approach used by SPAM 187	
  

(Fischer et al., 2006). The GAEZ formulation includes distance to market, population density, 188	
  

ruminant livestock density, farming system zone and producer price by crop as a means of 189	
  

further disaggregating available national or sub-national statistics. 190	
  

 191	
  

The iterative rebalancing algorithm used by the model is documented in detail in Fischer et al. 192	
  

(2006), but generally works by using multipliers (separated into rainfed R and irrigated I) for 193	
  

area (!!!   !"#  !!!) by crop j, for cropping intensity (!!   !"#  !!), and yield (!!!   !"#  !!!) by crop j. 194	
  

The algorithm updates the multipliers iteratively such that all constraints are met, and in the 195	
  

process produces grid-cell specific allocations of harvested area and production for rain-fed and 196	
  

irrigated land. !!   !"#  !! provide a measure of the discrepancy between the potential for multi-197	
  

cropping and actual cropping intensity, while !!!   !"#  !!!  represent the gap between actual and 198	
  

potential crop yields. 199	
  

 200	
  

The GAEZ model uses a two-step nested process within each iteration of the rebalancing 201	
  

algorithm, by which land is broadly allocated into two sets of crops: Set !!, for which the spatial 202	
  

distribution layer (!!")  exists for pixels i  and crops j, and Set !!, for which the spatial distribution 203	
  

layer does not exist. !!" is defined as a subset of the M3 dataset for selected crops in countries for 204	
  

which more than 50% of the data was derived from sub-national statistics. Shares of land are 205	
  

distributed to each set of irrigated (!"#!ℎ!"#!! and !"#!ℎ!"#!!) and rainfed (!"#!ℎ!"#!! and 206	
  

!"#!ℎ!"#!!) crops as follows: 207	
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 208	
  

!"#!ℎ!"#!! =
!"#$$%&'(&)*&+%),!!×!"#$%!"! ×!"#$%!×!!!×!"#$%&'"(&"#)!"!!∈!!!

!"#$$%&'(&)*&+%),!!×!"#$%!"! ×!"#$%!×!!!×!"#$%&'"(&"#)!"!!∈!!!∪!!!
    (S26) 

!"#!ℎ!"#!! = 1− !"#!ℎ!"#!!           (S27) 209	
  

 210	
  

!!! = (! ∈ !!) ∧ (!!" > 0) ∧ (!"#$%&'"(&"#)!"! ≥ !!!)      (S28) 211	
  

!!! = (! ∈ !!) ∧ (!"#$%&'"(&"#)!"! ≥ !!!)        (S29) 212	
  

 213	
  

Where !"#$%&'"(&"#)!"!  is defined in equation (S60), and !!!is the crop allocation relative yield 214	
  

threshold for irrigated crop j. Similarly for rainfed crops: 215	
  

 216	
  

!"#!ℎ!"#!! =
!"#$$%&'(&)*&+%),!!×!"#$%!"!×!"#$%!×!!!×!"#$%&'"(&"#)!"!!∈!!!

!"#$$%&'(&)*&+%),!!×!"#$%!"!×!"#$%!×!!!×!"#$%&'"(&"#)!"!!∈!!!∪!!!
                      (S30) 

!"#!ℎ!"#!! = 1− !"#!ℎ!"#!!        (S31) 217	
  

!!! = (! ∈ !!) ∧ (!!" > 0) ∧ (!"#$%&'"(&"#)!"! ≥ !!!)      (S32) 218	
  

!!! = (! ∈ !!) ∧ (!"#$%&'"(&"#)!"! ≥ !!!)        (S33) 219	
  

 220	
  

Where !"#$%&'"(&"#)!"!  is defined in equation (A61),  !!!is the crop allocation relative yield 221	
  

threshold for rainfed crop j. 222	
  

 223	
  

In the second step of the process, rainfed crop-specific area shares (!ℎ!"#!"!) and irrigated crop-224	
  

specific physical area shares (!ℎ!"#!"! ) are calculated for each grid cell i and crop j in the set of 225	
  

grid cells within a specific SRU k as follows: 226	
  

 227	
  

!ℎ!"#!"! = !"#!ℎ!"#!!×
(!!"
! ×!!

!)

(!!"
! ×!!

! )!∈!!
!

   , ! ∈ !!!         (S34) 228	
  

!ℎ!"#!"! = 0  , ! ∈ !! ∧   !   ∉ !!!        (S35) 229	
  

!ℎ!"#!"! = !"#!ℎ!"#!!×
!"#$$%&'(&)*&+%),!"

! ×!"#$%!"
! ×!"#$%!×!!

!×!"#$%&'"(&"#)!"
!

!"#$$%&'(&)*&+%),!"
! ×!"#$%!"

! ×!"#$%!×!!
! ×!"#$%&'!"#!$%!"

!
!∈!!

!
, ! ∈ !!!     (S36) 230	
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!ℎ!"#!"! = 0  , ! ∈ !! ∧   !   ∉ !!!         (S37) 231	
  

 232	
  

And similarly for rainfed crop areas: 233	
  

!ℎ!"#!"! = !"#$%"&!!×
(!!"
!×!!

!)

(!!"
! ×!!

!)!∈!!
!

   , ! ∈ !!!      (S38) 234	
  

!ℎ!"#!"! = 0  , ! ∈ !! ∧   !   ∉ !!!        (S39) 235	
  

!ℎ!"#!"! = !"#!ℎ!"#!!×
!"#$$%&'(&)*&+%),!"

!×!"#$%!"
!×!"#$%!×!!

!×!"#$%&'"(&"#)!"
!

!"#$$%&'(&)*&+%),!"
!×!"#$%!"

! ×!"#$%!×!!
!×!"#$%&'"(&"#)!"

!
!∈!!

!
, ! ∈ !!!  (S40) 236	
  

!ℎ!"#!"! = 0  , ! ∈ !! ∧   !   ∉ !!!        (S41) 237	
  

 238	
  

The crop-specific area shares are then used to calculate irrigated harvested areas (!"!"! ) and 239	
  

rainfed harvested areas (!"!"! ) for each pixel i and crop j in the set of grid cells within a specific 240	
  

SRU k as follows: 241	
  

 242	
  

!"!"! = !!"#$%&'()*+,'+!!×!"#$%&''("&)!×
!! !!!"#!"

! ×!"#$$%&'(&)*&+%),!"
!

!"#$%&'

!!!"#!"
!

!"#$%&'
  (S42) 243	
  

!"!"! = !!"#$%&'()*+,'+!!×!"#$%&''("&)!×
!! !!!"#!"

!×!"#$$%&'(&)*&+%),!"
!

!"#$%&'

!!!"#!"
!

!"#$%&'
 (S43) 244	
  

 245	
  

The constraints in the model are as follows: 246	
  

 247	
  

Grid cell proportion of rainfed and irrigated land: 248	
  

!!"#$%&'()*+,'+!! = !!"#$%&'()*+,'+!! − !!"#$%&'()*+,'+!! , ∀!   (S44) 249	
  

 250	
  

Where !!"#$%&'()*+,'+!!is the proportion of total cropland in grid cell i (IIASA dataset, 251	
  

developed as part of GAEZ) and !!"#$%&'()*+,'+!! is the proportion of each cropland grid cell 252	
  

that is equipped for irrigation (Seibert et al., 2007) dataset. 253	
  

 254	
  

Cropland extent by grid cell: 255	
  

!"#$%&'()*+,'+! = !!"#$%&'()!"#$"!!×!"#$%&''("&)! , ∀!    (S45) 256	
  

 257	
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Where !!"#$%&'()*+,'+!!is the total share of cropland (irrigated and rainfed) in each pixel 258	
  

 259	
  

Grid cell cropping intensity for annual crops: 260	
  

!"#$$%&'(&)*&+%),!! = !!×!"#$$%&'()*+#"!!      (S46) 261	
  

!"#$$%&'(&)*&+%),!! = !!×!"#$$%&'()*+#"!!      (S47) 262	
  

 263	
  

Where !"#$$%&'()*+#"!! and !"#$$%&'()*+#"!!   correspond to the cultivation intensity class 264	
  

factor of irrigated and rainfed annual crops, respectively. 265	
  

 266	
  

Total irrigated harvested area by crops: 267	
  

!"!! =∝!!×!"! ,      ∀!          (S48) 268	
  

!"!! = 1−∝!! ×!"! ,      ∀!         (S49) 269	
  

 270	
  

Where ∝!! is the proportion of harvested area that is irrigated for crop j. 271	
  

 272	
  

Harvested area and cropland extent (irrigated and rainfed) by grid cell: 273	
  

!"!! = !"#$$%&'(&)*&+%),!!×!!"#$%&'()*+,'+!!×!"#$%&''("&)! ,      ∀!  (S50) 274	
  

!"!! = !"#$$%&'(&)*&+%),!!×!!"#$%&'()*+,'+!!×!"#$%&''("&)! ,      ∀!  (S51) 275	
  

 276	
  

Harvested area by pixel and crop: 277	
  

!"!"! = !"#$$%&'(&)*&+%),!!×!ℎ!"#!"! ×!!"#$%&'!"#$%&$!!×!"#$%&''("&)! , ∀!, ! ∈ !""#!$  !"#$%     (S52) 278	
  

!"!"! = !"#$$%&'(&)*&+%),!×!ℎ!"#!"! ×!!"#$%&'()*+,'+!!×!"#$%&''("&)! ,∀!, ! ∈ !"#"$$%&'  !"#$% (S53) 279	
  

!"!"! = !"#$$%&'(&)*&+%),!!×!ℎ!"#!"!×!!"#$%&'()*+,'+!!×!"#$%&''("&)! ,      ∀!, ! ∈ !""#!$  !"#$%   (S54) 280	
  

!"!"! = !"#$$%&'(&)*&+%),!×!ℎ!"#!"!×!!"#$%&'(!"#$%#!!×!"#$%&''("&)! ,∀!, ! ∈ !"#"$$%&'  !"#$%(S55) 281	
  

 282	
  

Where !"#$$%&'(&)*&+%),! is the cropping intensity of perennial crops. 283	
  

!"!! = !"!"!! , ∀!          (S56) 284	
  

!"!! = !"!"! , ∀!!           (S57) 285	
  

 286	
  

Grid cell irrigated yield: 287	
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!"#$%!"! = !!!×!"#$%#&'()&$(*!"
!,!!"! , ∀!, !       (S58) 288	
  

!"#$%!"! = !!!× 1 − !!"! ×!"#$%#&'()&$(*!"
!,!"# + !!"!×!"#$%#&'()&$(*!"

!,!!"! , ∀!, !       (S59) 289	
  

 290	
  

Where  !"#$%#&'()&$(*!"
!,!!"!, !"#$%#&'()&$(*!"

!,!!"! and !"#$%#&'()&$(*!"
!,!"# are the potential 291	
  

yield of crop j on grid cell i in a high input irrigated system, high input rainfed system and low 292	
  

input rainfed system, respectively. Potential yield information is derived from the GAEZ v3.0 293	
  

database (Fischer et al., 2013). !!"!  is a spatial location factor used to reflect differences in 294	
  

management intensity and input use derived from remote sensing, household survey data, 295	
  

information on farm size or market orientation of a household. 296	
  

 297	
  

Grid cell relative yield factor: 298	
  

!"#$%&'"(&"#)!"! =
!"#$%#&'()&$(*!"

!,ℎ!"ℎ

max!∈!"#$%&'' !"#$%#&'()&$(*!"
!,ℎ!"ℎ   (S60) 299	
  

!"#$%&'"(&"#)!"! =
!"#$%#&'()&$(*!"

!,ℎ!"ℎ

max!∈!"#$%&'' !"#$%#&'!"#$!%!"
!,ℎ!"ℎ   (S61) 300	
  

 301	
  

Further information on the formulation used in the model may be found in the GAEZ v.3.0 302	
  

documentation main text with details in Appendix A8 (Fischer et al., 2013). Details on the 303	
  

iterative rebalancing algorithm may be found in Fischer et al. (2006).  304	
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Appendix S2: Comparison of the Downscaling Methodologies 305	
  

Cropland extent delineation 306	
  

As a first step towards delineating crop specific harvested area and yield, each cropping 307	
  

system model defined a spatially explicit layer of cropland extent, representing the proportion of 308	
  

cropland in each 5-minute pixel globally. Because each subsequent step in the modeling process 309	
  

relies on the definition of cropland extent, the degree to which each pair of cropland extent 310	
  

products agree represents an upper bound of inter-model agreement on the spatial distribution of 311	
  

crop physical areas. 312	
  

M3, MIRCA and SPAM all rely on the same base dataset for cropland extent: 313	
  

Ramankutty et al., (2008), which is an extension of Leff et al., (2004). Leff et al., (2004) 314	
  

synthesize satellite-derived land cover data and agricultural census data worldwide to assess the 315	
  

distribution of major crops across a global 5 arc minute grid in terms of the proportion of the 316	
  

total harvested area of each of the crops in each administrative unit. Following and improving on 317	
  

this work, Ramankutty et al. (2008) developed a new global land cover data set for croplands and 318	
  

pasture circa 2000 (at the same 5 arc minute resolution of the original dataset) by combining 319	
  

Boston University’s MODIS-derived land cover data (Friedl et al., 2002) and SPOT 320	
  

VEGETATION based GLC2000 (Bartholome and Belward, 2005). Ramankutty et al. (2008) 321	
  

apply a multiple linear regression model to relate the combined satellite derived datasets to the 322	
  

agricultural statistics using a least squares error framework. The optimization is applied 323	
  

separately to six different regions of the world. 324	
  

The cropland extent developed by Ramankutty et al. (2008) is used directly by M3 and 325	
  

with modifications by MIRCA and SPAM. By combining Ramankutty et al. (2008) and the 326	
  

global map of irrigation areas (GMIA), MIRCA produced a global dataset of monthly growing 327	
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areas of 26 irrigated crops on the same 5 arc minutes grid. SPAM similarly reconciles the GMIA 328	
  

map of irrigated areas and Ramunkutty cropland extent by setting the cropland extent to be at 329	
  

least equal to the irrigated area in a preprocessing step. For more information on each of these 330	
  

methodologies, see Appendix S1. 331	
  

GAEZ uses GLC2000 data and GMIA, but also considers a global land cover 332	
  

categorization (IFPRI, 2002), which is based on a reinterpretation of the Global Land Cover 333	
  

Characteristics Database v.2.0 (EROS Data Center, 2000), a layer of forest land from the Forest 334	
  

Resources Assessment of FAO (FAO, 2001), the IUCN-WCMC protected areas inventory 335	
  

(WPDA, 2009) and an estimate of land required for housing and infrastructure for the year 2000 336	
  

derived from FAO-SDRN, based on LANDSCAN 2003 that were calibrated to UN 2000 337	
  

population figures (Fischer et al., 2008; Bhaduri et al., 2002; Dobson et al., 2000). GAEZ runs a 338	
  

cross-sectional regression on the land cover distributions to derive weights, which are then 339	
  

applied in an iterative adjustment procedure to match estimated reference values such that the 340	
  

geographic and statistical data are consistent. 341	
  

 342	
  

Suitability Constraints 343	
  

GAEZ and SPAM further constrain potential crop distribution using biophysical and 344	
  

socioeconomic suitability prior to allocating the harvested area of each crop. M3 and MIRCA do 345	
  

not consider suitability criteria. SPAM directly uses the suitable area product from GAEZ, 346	
  

meaning that despite using different cropland extent products to constrain the distribution of 347	
  

crops, the two models use identical constraints on biophysically suitable land. The GAEZ 348	
  

suitability product integrates an extensive set of edaphic and climatic factors into its biophysical 349	
  

suitability analysis to produce a potential yield estimate and a suitability index by production 350	
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system and crop. Further information on the suitability index analysis developed as part of the 351	
  

GAEZ model may be found in Fischer et al. (2013). 352	
  

In addition to biophysical suitability criteria, both SPAM and GAEZ consider the 353	
  

socioeconomic factors that often constrain or encourage crop production. As a means of 354	
  

differentiating between low, medium and high input or management conditions, GAEZ divides 355	
  

the land into land use types. Land use types are derived using information on road infrastructure, 356	
  

livestock density, population density and distance to market. Low input, for example, relies on 357	
  

available human/livestock labor while high input is market oriented, using improved varieties, 358	
  

fertilizer, pesticides and machinery. Similar to GAEZ, SPAM explicitly models different 359	
  

production systems, which include high-input irrigated, high-input rainfed, low –input rainfed 360	
  

and subsistence (always low-input rainfed). SPAM includes data on crop prices and market 361	
  

access to construct a realistic market scenario in which there are not only biophysical barriers to 362	
  

producing crops, but social economic forces as well (see Appendix S1 for an explicit 363	
  

mathematical formulation). 	
  364	
  

 365	
  

Distribution of harvested area and yield 366	
  

Perhaps the largest methodological differences between M3, MIRCA, SPAM and GAEZ 367	
  

are in the approaches used to downscale statistical data reported at administrative unit level into 368	
  

gridcell specific values. M3 uses the most straightforward method, allocating each crop evenly 369	
  

across potential cropland in each statistical reporting unit as the proportion of harvested area 370	
  

occupied by the crop to total harvested area in that reporting unit. Crop yield in each grid cell is 371	
  

assigned as being the same as the yield reported for the statistical unit as a whole. This approach 372	
  

implicitly assumes both environmental conditions and management/production systems are 373	
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uniform across the cropland extents of each statistical reporting unit, or that there is insufficient 374	
  

information to characterize the spatial variations of crop production within a statistical unit. As a 375	
  

result, the distinct tolerances of individual crops to those spatial patterns are not incorporated in 376	
  

the downscaling procedure. This approach does not, furthermore, acknowledge the very 377	
  

significant differences between the yield levels of irrigated and rainfed production systems, nor 378	
  

of commercial and smallholder producers within these sometimes large and highly diverse 379	
  

statistical reporting units. 380	
  

MIRCA primarily focuses on reconciling the differences between information derived 381	
  

from sub-national crop production statistics, M3 crop distributions and the Siebert et al. (2005) 382	
  

irrigated areas database. MIRCA deals only with harvested area and essentially uses the relative 383	
  

share of rainfed and irrigated cropland within each grid cell to break out M3 total crop areas into 384	
  

gridcell-specific rainfed and irrigated areas. The MIRCA model derives cropping intensity, 385	
  

which is used to convert harvested to physical area. MIRCA also includes use of numerous 386	
  

checks and adjustments to reconcile differences between the cropland area of Ramankutty et al. 387	
  

(2008) and the irrigated area estimates of Siebert et al. (2005) within each gridcell, given that 388	
  

total cropland area should at all times be greater than or equal to the irrigated cropland area. 389	
  

Similar to M3, MIRCA does not consider any form of suitability in its downscaling procedure.  390	
  

The downscaling approaches of GAEZ and SPAM are predicated on the importance of 391	
  

attempting to take explicit account of available evidence of the spatial variation of production 392	
  

conditions within the cropland extent and of the significantly different yield resulting from each 393	
  

of those systems.	
  Both GAEZ and SPAM use an approach that produces a result mathematically 394	
  

equivalent to that of a cross-entropy formulation, but GAEZ uses an iterative rebalancing 395	
  

procedure to adjust weighting factors until all constraints in the model are met, while SPAM uses 396	
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a cross-entropy formulation. SPAM uses explicit cropping intensity from statistics and expert 397	
  

opinion to calculate cropping intensity while GAEZ derives a cropping intensity factor through 398	
  

the rebalancing procedure (see Appendix S1). Although the two models incorporate similar 399	
  

information (see Table 2, main text), the manner in which the information is used to constrain the 400	
  

model differs (see Appendix S1 for details on the mathematical formulation of each model). 401	
  

Additionally, GAEZ differs from SPAM in that it uses a “location factor” to incorporate spatially 402	
  

explicit information including geo-referenced household survey data. The prior in SPAM is used 403	
  

to capture spatially explicit information as well but the model does not include household survey 404	
  

data, instead leveraging the field presence of the CGIAR network to incorporate an extensive 405	
  

dataset of expert elicitations. 406	
  

 407	
  

Input Data and Model Interdependencies 408	
  

The major determinants of the potential reliability of downscaling efforts are (a) the quality 409	
  

of the cropland extent dataset indicating the physical extent and area intensity of cropland (e.g., 410	
  

share of cropland area in each 5 arc minute grid cell), and (b) the resolution and reliability of the 411	
  

sub-national crop statistics. Each model builds on a common set of available data as well as 412	
  

previous work in cropping systems modeling. Table 2 (main text) illustrates both the broad 413	
  

linkages and increasing sets of input data and assumptions that each of the M3, MIRCA, GAEZ 414	
  

and SPAM datasets relies upon. 415	
  

 416	
  

National and Sub-National Statistics 417	
  

All four datasets draw on FAOSTAT national data to provide control totals for cropland area, 418	
  

the harvested area, and yields of specific crops, while also spending considerable efforts to 419	
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collect sub-national crop statistics to allow as detailed as possible disaggregation of national 420	
  

totals within sub-national administrative boundaries. Since MIRCA relies on M3 to provide its 421	
  

input data on the spatial allocation of the total area and average yield, it relies initially on the 422	
  

same sources of subnational crop statistics. The GAEZ model uses data from FAOSTAT as a 423	
  

constraint at the national level and – similar to MIRCA - uses the M3 sub-national statistics for 424	
  

select crops in countries that have sub-national statistics covering more than 50% of the country. 425	
  

SPAM relies on a separate collection of sub-national statistical data sources, focusing on 426	
  

increased coverage in developing countries. 427	
  

M3 reports a total of 22,106 statistical reporting units globally, of which 56 were national, 428	
  

2,299 were first level sub-national disaggregation (e.g., US state level), and 19,751 were second 429	
  

level (e.g. US county level) reporting units. SPAM reports 24,507 statistical units of which 251 430	
  

were national, 2,758 were first level, and 21,498 were second level. SPAM focused its data 431	
  

collection efforts particularly in developing countries. For example in Africa the M3 and SPAM 432	
  

data sets were developed using around 300 and 4,150 second-level statistical reporting units 433	
  

respectively.  434	
  

 435	
  

Extent of Irrigation 436	
  

Those models that distinguish between rainfed and irrigated cultivations (MIRCA, SPAM 437	
  

and GAEZ) all use the GMIA v4.0, released in 2007 (Siebert et al., 2005), to identify the location 438	
  

and area intensity of irrigated production. However, the MIRCA and SPAM teams compiled 439	
  

information in the national and sub-national shares of different production systems and cropping 440	
  

intensities independently. MIRCA and SPAM both draw on FAO’s AQUASTAT and national 441	
  

databases for gaining greater insights into national and crop-specific irrigation extents and 442	
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practices, but MIRCA relies on a richer collection of national data, including a more complete 443	
  

collection of national/sub-national crop calendars and cropping intensities (in part because the 444	
  

goal of MIRCA is to produce monthly and not annual crop distribution maps). In contrast to 445	
  

MIRCA and SPAM, GAEZ relies on its own data for information about cultivation intensity of 446	
  

irrigated crops. 447	
  

 448	
  

Ancillary Data 449	
  

SPAM and GAEZ incorporate datasets beyond those used by M3 and MIRCA as a means of 450	
  

differentiating between production levels within cropping systems. The SPAM approach requires 451	
  

additional sets of data because it attempts further disaggregation of its rainfed production 452	
  

statistics amongst commercial and subsistence categories, and bases its approach to distribution 453	
  

of individual crops within the cropland extent on agronomic, economic and demographic 454	
  

principles and assumptions. These  include crop area and production shares amongst irrigated 455	
  

production and large-scale/commercial and smallholder rainfed production, the spatial 456	
  

differences in the biophysical suitability of individual crops for irrigated and rainfed (commercial 457	
  

and subsistence) production, and estimates of the spatial patterns of population density as well as 458	
  

crop prices. GAEZ similarly divides the land into land use types to reflect variable management 459	
  

and input conditions. Data used to differentiate among land use types reflect the specific 460	
  

requirements of each and include road infrastructure, livestock density, population density and 461	
  

distance to market. Table 2 reflects the overlapping and separate ancillary datasets used by 462	
  

SPAM and GAEZ. In addition to available ancillary datasets, SPAM leverages the international 463	
  

network and field presence of CGIAR to undergo a systemic validation process. The feedback 464	
  



19	
  
	
  

from this validation is used to inform future model simulations. This process is unique to the 465	
  

SPAM model. 466	
  

  467	
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Appendix S3: Gaussian Filter Sensitivity Analysis 468	
  

 469	
  

The 2-dimensional Gaussian filter for pixel i may be expressed as: 470	
  

!(!, !)! =
!

!!!!
!!

!!!!!

!!!      (S1) 471	
  

Where x is the distance from the horizontal axis, y is the distance from the vertical axis and σ is the 472	
  

standard deviation of the Gaussian distribution, used to control the kernel density as illustrated below 473	
  

 474	
  

Figure S1: Differences in Cropland extent with Gaussian filters having kernel densities of 0 (pixel-level 475	
  

comparison), 1 (4 pixel radius), 2 (8 pixel radius), 3 (12 pixel radius) and 4 (16 pixel radius). 	
  476	
  

 477	
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 478	
  

 479	
  

Figure S2: Differences in Cropland extent with Gaussian filters having kernel densities of 0 (pixel-level 480	
  

comparison), 1 (4 pixel radius), 2 (8 pixel radius), 3 (12 pixel radius) and 4 (16 pixel radius).	
  481	
  

 482	
  
 483	
  



22	
  
	
  

Appendix S4: Cropland extent supplementary material 484	
  

 485	
  

Figure S1: Cropland extent of A) GAEZ and B) Ramankutty et al., (2008)	
  486	
  

  487	
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Figure S2: Pixel-wise cropland extent differences	
  488	
  

 489	
  
 490	
  

 491	
  

 492	
  

Figure S3: GAEZ and Ramankutty cropland Extent by Latitude493	
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Appendix S5: Supplementary Figures for Wheat 494	
  

Figure S1: Model agreement on magnitude of harvested area of wheat by threshold. A) Harvested Area > 495	
  

0% of cell, B) Harvested Area > 1% of cell, C) Harvested Area > 10% of cell, D) Harvested Area > 25% 496	
  

of cell497	
  

498	
  
 	
  499	
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Appendix S6: Supplementary Analysis for Rice and Maize 500	
  

S6.1 Rice harvested areas and yields 501	
  

Although there are minor departures from model consensus at higher thresholds, the majority 502	
  

of the discrepancies in the spatial distribution of rice are at the lowest threshold (see 503	
  

supplementary Figure S1 panel A). As discussed with wheat, these dissimilarities arise due to 504	
  

differences in model methodology. But in contrast to wheat, the models in disagreement are 505	
  

primarily the SPAM and MIRCA models (see supplementary Fig. S5 in Appendix S6.2), not 506	
  

only those that spread harvested area across plausible cropland, implying that the inconsistencies 507	
  

are in part attributable to the collection of supplementary subnational statistics as described in 508	
  

Section 4.1. At higher thresholds for harvested area the disagreement between products is 509	
  

minimal and will be explored further in the following analyses. 510	
  

The harvested areas of rice appear to be less influenced by discrepancies in the cropland 511	
  

extent products, and instead differ as a function of downscaling method or input data. Evaluating 512	
  

the harvested areas of rice by latitude reveals that MIRCA predicts significantly more harvested 513	
  

area for rice north of 30N than do the other products (see Fig. S2). This divergence may stem 514	
  

from the fact that the MIRCA method of crop distribution does not consider biophysical 515	
  

limitations, or it may reflect differences in the input statistical crop yields at a sub-national level 516	
  

given that the above average estimation by MIRCA appears to be concentrated in eastern China 517	
  

(see Fig. S3). 518	
  

With the exception of MIRCAs large harvested area in east China, the relation between 519	
  

GAEZ and each of the products that use Ramankutty cropland extent (M3, MIRCA and SPAM) 520	
  

is nearly identical (see Fig. S3). This may indicate that all three use similar sub-national rice data 521	
  

in China. M3, MIRCA and SPAM differ from GAEZ, for example, in their distribution of rice 522	
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within India: GAEZ distributes more rice area to the southwest while other products distribute 523	
  

more rice to the northeast. 524	
  

Maps of rice yields match even less well than did the wheat yields, differing significantly 525	
  

over all latitudes north of the equator (see Fig. S2). M3 predicts yields higher than SPAM and 526	
  

GAEZ over most latitudes but particularly in Asia (see Figs. S2 and S4). This can be seen in the 527	
  

skew of the distributions of the histograms in each pair-wise yield comparison. The differences 528	
  

between GAEZ and SPAM are most pronounced in China. SPAM predicts consistently lower 529	
  

yields than both M3 and GAEZ over nearly all of China. 530	
  

Figure S5 illustrates the model-dependent differences, and resulting uncertainty, in 531	
  

calculating the yield gap (panel A) using both an absolute measure (panel C) and with regard to 532	
  

existing yields (panel B). Areas in which the yield gap uncertainty ratio approaches 1 signify 533	
  

areas in which uncertainty dominates the estimate of the yield gap. However, it is equally 534	
  

important to contextualize these uncertainties relative to existing yields and using an absolute 535	
  

measure of model difference. Areas displaying large values in all three panels indicate areas in 536	
  

which the model-estimated yield gaps disagree (panel C), where this disagreement is a 537	
  

significant proportion of the estimated yield gap (panel A) and in which the differences are 538	
  

important in the context of existing food production systems (panel B). 539	
  

 The model dependent uncertainty exceeds the estimated yield gap in significant parts of 540	
  

every rice-growing continent, meaning that uncertainty in the estimation of yields dominates the 541	
  

yield gap calculation in these regions. As with wheat, the differences relative to existing yields 542	
  

are decreased in some major producing areas, but remain significant in others. Of particular 543	
  

interest are the Ganges basin in India, Peru, parts of China and Indonesia, which display high 544	
  

values across all three indices. 545	
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 546	
  

 547	
  

S6.2 Maize harvested area and yield 548	
  

Model comparisons for the harvested area of maize should be interpreted with some care as 549	
  

not all models measure identical quantities. M3, GAEZ and SPAM all measure maize as it is 550	
  

grown for grain only, while MIRCA measures maize as the sum of maize grown for silage and 551	
  

for grain. While there was insufficient model data to separate (or aggregate) the models 552	
  

quantities to align identically, a comparison between models is still useful for broadly identifying 553	
  

inter-model differences. For the yield analysis all models (M3, SPAM and GAEZ) did measure 554	
  

the same quantity. 555	
  

The consensus analysis reveals that as compared with rice and wheat, the agreement between 556	
  

models on the extent of maize harvested area is generally good with a few notable exceptions. At 557	
  

the lowest threshold of harvested area, MIRCA is alone in designating growing area in much of 558	
  

Canada, Japan, the UK and Ireland while SPAM is the only model that indicates additional area 559	
  

in central Asia (see supplementary Fig. S6 panel A and supplementary Fig. S11 in Appendix 560	
  

S7.3). The SPAM differences are likely due to collection of additional national or sub-national 561	
  

statistics, while the MIRCA differences may arise due to a combination of the inclusion of silage 562	
  

and additional data collection. At the threshold of > 1% (panel B), model methodology 563	
  

dominates the differences: MIRCA indicates higher proportions of maize harvested area due to a 564	
  

more even distribution across statistical reporting units. In southeast China all models agree on 565	
  

the general extent of maize harvested area but disagree trivially on the spatial placement as 566	
  

evidenced by comparison with the results of the Gaussian analysis in this region.  All models 567	
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show a relative consensus on spatial extent of maize harvested area that covers >10% and > 25% 568	
  

of the cell (see panels C and D of S6). 569	
  

As with the harvested area of wheat, the broad patterns of disagreement in the harvested 570	
  

areas of maize reflect differences in the cropland extent products in many regions. This relation 571	
  

is particularly apparent in South America, West Africa and North America (see Fig. S8). By 572	
  

latitude, MIRCA displays a larger harvested area than any other product at 50-60N (see Fig. S7). 573	
  

This may have to do with the lack of biophysical constraints in the distribution method or may be 574	
  

due to the inclusion of maize used for silage, as described earlier.  575	
  

The maize yields show consistently different patterns both spatially and by lattitude. GAEZ, 576	
  

for example, displays consistently higher yields in the tropics (see Fig. S7), while M3 predicts 577	
  

significantly lower yields than either SPAM or GAEZ in Eastern United States (see Fig. S9). As 578	
  

evidenced by the skew in the histogram insets of the pair-wise comparisons, SPAM distributes 579	
  

maize yields to be significantly larger in a smaller number of cells (insets, Fig. S9). 580	
  

Figure S10 illustrates the uncertainty ratio (panel A), the model-dependent differences in 581	
  

calculating the yield gap (panel C), and those differences relative to existing yields (panel C). 582	
  

Differences in the estimated yield gap exceed 1 tonne / ha over a majority of maize producing 583	
  

areas of the globe. As with both rice and wheat, uncertainty dominates the calculation of the 584	
  

yield gap in significant portions of every continent (see Fig. S10). Areas displaying large values 585	
  

in all three indices include parts of East and Southern Africa, Brazil, Mexico and Pakistan. These 586	
  

differences highlight the importance of continued efforts towards improving model estimates of 587	
  

harvested area and yield. 588	
  

  589	
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Figure	
  S1: Model agreement on magnitude of harvested area of rice by threshold. A) Harvested Area > 590	
  

0% of cell, B) Harvested Area > 1% of cell, C) Harvested Area > 10% of cell, D) Harvested Area > 25% 591	
  

of cell592	
  

	
  593	
  
  594	
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 595	
  

 596	
  

Figure S2: Rice harvested area and yield by latitude 597	
  

 598	
  

 599	
  
  600	
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Figure S3: Comparison of rice harvested area by model following a Gaussian filter of three sigma kernel 601	
  
density. Histograms in each panel display the normalized percent of pixels as a function of 602	
  
harvested area, y-axis limits[0, 50%], x-axis limits[-5000, 5000] ha. 603	
  

 604	
  

 605	
  
  606	
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Figure S4: Comparison of rice yield by model following a Gaussian filter of three sigma kernel density. 607	
  

Histograms in each panel display the normalized percent of pixels as a function of yield, y-axis 608	
  

limits[0, 35%], x-axis limits[-20, 20] tonnes/ha. 609	
  

 610	
  
 611	
  

 612	
  

 613	
  

  614	
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Figure S5: Implications of model differences for estimated rice yield gaps.  A) Yield Gap Uncertainty 615	
  

Ratio: average model difference divided by average estimated yield gap B) average difference in 616	
  

estimated yield gap divided by existing yield C) average difference in estimated yield gap 617	
  

 618	
  

  619	
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Figure	
  S6:	
  	
  Model agreement on magnitude of harvested area of maize by threshold. A) Harvested Area > 620	
  

0% of cell, B) Harvested Area > 1% of cell, C) Harvested Area > 10% of cell, D) Harvested Area > 25% 621	
  

of cell	
  622	
  

 623	
  
 624	
  

 625	
  

 626	
  

  627	
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Figure S7: Maize harvested area and yield by latitude 628	
  

 629	
  

 630	
  

  631	
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Figure S8: Comparison of maize harvested area by model following a Gaussian filter of three sigma 632	
  

kernel density. Histograms in each panel display the normalized percent of pixels as a function of 633	
  

harvested area, y-axis limits[0, 35%], x-axis limits[-5000, 5000] ha. 634	
  

 635	
  
 636	
  

  637	
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Figure S9: Comparison of maize yield by model following a Gaussian filter of three sigma kernel density. 638	
  

Histograms in each panel display the normalized percent of pixels as a function of yield, y-axis limits[0, 639	
  

35%], x-axis limits[-20, 20] tonnes/ha. 640	
  

 641	
  

642	
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Figure S10: Implications of model differences for estimated maize yield gaps.  A) Yield Gap Uncertainty 

Ratio: average model difference divided by average estimated yield gap B) average difference in 

estimated yield gap divided by existing yield C) average difference in estimated yield gap 
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Appendix S7: Supplementary pixel-wise figures for wheat, rice and maize 

 

S7.1 Pixel-wise figures for wheat: 

 

Figure S1: Wheat harvested area for A) M3, B) GAEZ, C) MIRCA and D) SPAM 	
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Figure S2: pixel-wise comparison of the wheat harvested area by model
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Figure S3: Wheat yield for A) M3, B) GAEZ, and C) SPAM	
  

 
 

Figure S4: pixel-wise comparison of the wheat yield by model	
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S6.2 Pixel-wise figures for rice 

 

Figure S5: Rice harvested area for A) M3, B) GAEZ, C) MIRCA and D) SPAM 	
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Figure S6: pixel-wise comparison of the rice harvested area by model 	
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Figure S7: Rice yield for A) M3, B) GAEZ, and C) SPAM	
  

 
 

 

Figure S8: pixel-wise comparison of the rice yield by model	
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S7.3 Pixel-wise figures for maize 

 

Figure S9: Maize harvested area for A) M3, B) GAEZ, C) MIRCA and D) SPAM 	
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Figure S10: pixel-wise comparison of the maize harvested area by model	
  

 
  



47	
  
	
  

Figure S11: Maize yield for A) M3, B) GAEZ, and C) SPAM	
  

 
 

Figure S12: pixel-wise comparison of the maize yield by model	
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